/* * Copyright (c) Meta Platforms, Inc. and affiliates. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Docs: https://fburl.com/fbcref_function // /** * @class folly::Function * @refcode folly/docs/examples/folly/Function.cpp * * A polymorphic function wrapper that is not copyable and does not * require the wrapped function to be copy constructible. * * `folly::Function` is a polymorphic function wrapper, similar to * `std::function`. The template parameters of the `folly::Function` define * the parameter signature of the wrapped callable, but not the specific * type of the embedded callable. E.g. a `folly::Function` * can wrap callables that return an `int` when passed an `int`. This can be a * function pointer or any class object implementing one or both of * * int operator(int); * int operator(int) const; * * If both are defined, the non-const one takes precedence. * * Unlike `std::function`, a `folly::Function` can wrap objects that are not * copy constructible. As a consequence of this, `folly::Function` itself * is not copyable, either. * * Another difference is that, unlike `std::function`, `folly::Function` treats * const-ness of methods correctly. While a `std::function` allows to wrap * an object that only implements a non-const `operator()` and invoke * a const-reference of the `std::function`, `folly::Function` requires you to * declare a function type as const in order to be able to execute it on a * const-reference. * * For example: * * class Foo { * public: * void operator()() { * // mutates the Foo object * } * }; * * class Bar { * std::function foo_; // wraps a Foo object * public: * void mutateFoo() const * { * foo_(); * } * }; * * Even though `mutateFoo` is a const-method, so it can only reference `foo_` * as const, it is able to call the non-const `operator()` of the Foo * object that is embedded in the foo_ function. * * `folly::Function` will not allow you to do that. You will have to decide * whether you need to invoke your wrapped callable from a const reference * (like in the example above), in which case it will only wrap a * `operator() const`. If your functor does not implement that, * compilation will fail. If you do not require to be able to invoke the * wrapped function in a const context, you can wrap any functor that * implements either or both of const and non-const `operator()`. * * The template parameter of `folly::Function`, the `FunctionType`, can be * const-qualified. Be aware that the const is part of the function signature. * It does not mean that the function type is a const type. * * using FunctionType = R(Args...); * using ConstFunctionType = R(Args...) const; * * In this example, `FunctionType` and `ConstFunctionType` are different * types. `ConstFunctionType` is not the same as `const FunctionType`. * As a matter of fact, trying to use the latter should emit a compiler * warning or error, because it has no defined meaning. * * // This will not compile: * folly::Function func = Foo(); * // because Foo does not have a member function of the form: * // void operator()() const; * * // This will compile just fine: * folly::Function func = Foo(); * // and it will wrap the existing member function: * // void operator()(); * * When should a const function type be used? As a matter of fact, you will * probably not need to use const function types very often. See the following * example: * * class Bar { * folly::Function func_; * folly::Function constFunc_; * * void someMethod() { * // Can call func_. * func_(); * // Can call constFunc_. * constFunc_(); * } * * void someConstMethod() const { * // Can call constFunc_. * constFunc_(); * // However, cannot call func_ because a non-const method cannot * // be called from a const one. * } * }; * * As you can see, whether the `folly::Function`'s function type should * be declared const or not is identical to whether a corresponding method * would be declared const or not. * * You only require a `folly::Function` to hold a const function type, if you * intend to invoke it from within a const context. This is to ensure that * you cannot mutate its inner state when calling in a const context. * * This is how the const/non-const choice relates to lambda functions: * * // Non-mutable lambdas: can be stored in a non-const... * folly::Function print_number = * [] (int number) { std::cout << number << std::endl; }; * * // ...as well as in a const folly::Function * folly::Function print_number_const = * [] (int number) { std::cout << number << std::endl; }; * * // Mutable lambda: can only be stored in a non-const folly::Function: * int number = 0; * folly::Function print_number = * [number] () mutable { std::cout << ++number << std::endl; }; * // Trying to store the above mutable lambda in a * // `folly::Function` would lead to a compiler error: * // error: no viable conversion from '(lambda at ...)' to * // 'folly::Function' * * Casting between const and non-const `folly::Function`s: * conversion from const to non-const signatures happens implicitly. Any * function that takes a `folly::Function` can be passed * a `folly::Function` without explicit conversion. * This is safe, because casting from const to non-const only entails giving * up the ability to invoke the function from a const context. * Casting from a non-const to a const signature is potentially dangerous, * as it means that a function that may change its inner state when invoked * is made possible to call from a const context. Therefore this cast does * not happen implicitly. The function `folly::constCastFunction` can * be used to perform the cast. * * // Mutable lambda: can only be stored in a non-const folly::Function: * int number = 0; * folly::Function print_number = * [number] () mutable { std::cout << ++number << std::endl; }; * * // const-cast to a const folly::Function: * folly::Function print_number_const = * constCastFunction(std::move(print_number)); * * When to use const function types? * Generally, only when you need them. When you use a `folly::Function` as a * member of a struct or class, only use a const function signature when you * need to invoke the function from const context. * When passing a `folly::Function` to a function, the function should accept * a non-const `folly::Function` whenever possible, i.e. when it does not * need to pass on or store a const `folly::Function`. This is the least * possible constraint: you can always pass a const `folly::Function` when * the function accepts a non-const one. * * How does the const behaviour compare to `std::function`? * `std::function` can wrap object with non-const invocation behaviour but * exposes them as const. The equivalent behaviour can be achieved with * `folly::Function` like so: * * std::function stdfunc = someCallable; * * folly::Function uniqfunc = constCastFunction( * folly::Function(someCallable) * ); * * You need to wrap the callable first in a non-const `folly::Function` to * select a non-const invoke operator (or the const one if no non-const one is * present), and then move it into a const `folly::Function` using * `constCastFunction`. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace folly { template class Function; template Function constCastFunction( Function&&) noexcept; template Function constCastFunction( Function&&) noexcept; namespace detail { namespace function { enum class Op { MOVE, NUKE, HEAP }; union Data { struct BigTrivialLayout { void* big; std::size_t size; std::size_t align; }; void* big; BigTrivialLayout bigt; std::aligned_storage<6 * sizeof(void*)>::type tiny; }; struct CoerceTag {}; template using FunctionNullptrTest = decltype(static_cast(static_cast(T(nullptr)) == nullptr)); template constexpr bool IsNullptrCompatible = is_detected_v; template , int> = 0> constexpr bool isEmptyFunction(T const&) { return false; } template , int> = 0> constexpr bool isEmptyFunction(T const& t) { return static_cast(t == nullptr); } template using CallableResult = decltype(FOLLY_DECLVAL(F&&)(FOLLY_DECLVAL(Args&&)...)); template constexpr bool CallableNoexcept = noexcept(FOLLY_DECLVAL(F&&)(FOLLY_DECLVAL(Args&&)...)); template < typename From, typename To, typename = typename std::enable_if< !std::is_reference::value || std::is_reference::value>::type> using IfSafeResultImpl = decltype(void(static_cast(FOLLY_DECLVAL(From)))); #if defined(_MSC_VER) // Need a workaround for MSVC to avoid the inscrutable error: // // folly\function.h(...) : fatal error C1001: An internal error has // occurred in the compiler. // (compiler file 'f:\dd\vctools\compiler\utc\src\p2\main.c', line 258) // To work around this problem, try simplifying or changing the program // near the locations listed above. template using CallArg = T&&; #else template using CallArg = conditional_t, T, T&&>; #endif template class FunctionTraitsSharedProxy { std::shared_ptr> sp_; public: explicit FunctionTraitsSharedProxy(std::nullptr_t) noexcept {} explicit FunctionTraitsSharedProxy(Function&& func) : sp_(func ? std::make_shared>(std::move(func)) : std::shared_ptr>()) {} R operator()(A... args) const noexcept(Nx) { if (!sp_) { throw_exception(); } return (*sp_)(static_cast(args)...); } explicit operator bool() const noexcept { return sp_ != nullptr; } friend bool operator==( FunctionTraitsSharedProxy const& proxy, std::nullptr_t) noexcept { return proxy.sp_ == nullptr; } friend bool operator!=( FunctionTraitsSharedProxy const& proxy, std::nullptr_t) noexcept { return proxy.sp_ != nullptr; } friend bool operator==( std::nullptr_t, FunctionTraitsSharedProxy const& proxy) noexcept { return proxy.sp_ == nullptr; } friend bool operator!=( std::nullptr_t, FunctionTraitsSharedProxy const& proxy) noexcept { return proxy.sp_ != nullptr; } }; template < typename Fun, bool Small, bool Nx, typename ReturnType, typename... Args> ReturnType call_(Args... args, Data& p) noexcept(Nx) { auto& fn = *static_cast(Small ? &p.tiny : p.big); if constexpr (std::is_void::value) { fn(static_cast(args)...); } else { return fn(static_cast(args)...); } } template struct FunctionTraits; template struct FunctionTraits { using Call = ReturnType (*)(CallArg..., Data&); using ConstSignature = ReturnType(Args...) const; using NonConstSignature = ReturnType(Args...); using OtherSignature = ConstSignature; template > using IfSafeResult = IfSafeResultImpl; template static constexpr Call call = call_...>; static ReturnType uninitCall(CallArg..., Data&) { throw_exception(); } ReturnType operator()(Args... args) { auto& fn = *static_cast*>(this); return fn.call_(static_cast(args)..., fn.data_); } using SharedProxy = FunctionTraitsSharedProxy; }; template struct FunctionTraits { using Call = ReturnType (*)(CallArg..., Data&); using ConstSignature = ReturnType(Args...) const; using NonConstSignature = ReturnType(Args...); using OtherSignature = NonConstSignature; template > using IfSafeResult = IfSafeResultImpl; template static constexpr Call call = call_...>; static ReturnType uninitCall(CallArg..., Data&) { throw_exception(); } ReturnType operator()(Args... args) const { auto& fn = *static_cast*>(this); return fn.call_(static_cast(args)..., fn.data_); } using SharedProxy = FunctionTraitsSharedProxy; }; template struct FunctionTraits { using Call = ReturnType (*)(CallArg..., Data&) noexcept; using ConstSignature = ReturnType(Args...) const noexcept; using NonConstSignature = ReturnType(Args...) noexcept; using OtherSignature = ConstSignature; template < typename F, typename R = CallableResult, std::enable_if_t, int> = 0> using IfSafeResult = IfSafeResultImpl; template static constexpr Call call = call_...>; static ReturnType uninitCall(CallArg..., Data&) noexcept { terminate_with(); } ReturnType operator()(Args... args) noexcept { auto& fn = *static_cast*>(this); return fn.call_(static_cast(args)..., fn.data_); } using SharedProxy = FunctionTraitsSharedProxy; }; template struct FunctionTraits { using Call = ReturnType (*)(CallArg..., Data&) noexcept; using ConstSignature = ReturnType(Args...) const noexcept; using NonConstSignature = ReturnType(Args...) noexcept; using OtherSignature = NonConstSignature; template < typename F, typename R = CallableResult, std::enable_if_t, int> = 0> using IfSafeResult = IfSafeResultImpl; template static constexpr Call call = call_...>; static ReturnType uninitCall(CallArg..., Data&) noexcept { terminate_with(); } ReturnType operator()(Args... args) const noexcept { auto& fn = *static_cast*>(this); return fn.call_(static_cast(args)..., fn.data_); } using SharedProxy = FunctionTraitsSharedProxy; }; // These are control functions. They type-erase the operations of move- // construction, destruction, and conversion to bool. // // The interface operations are noexcept, so the implementations are as well. // Having the implementations be noexcept in the type permits callers to omit // exception-handling machinery. // // This is intentionally instantiated per size rather than per function in order // to minimize the number of instantiations. It would be safe to minimize // instantiations even more by simply having a single non-template function that // copies sizeof(Data) bytes rather than only copying sizeof(Fun) bytes, but // then for small function types it would be likely to cross cache lines without // need. But it is only necessary to handle those sizes which are multiples of // the alignof(Data), and to round up other sizes. struct DispatchSmallTrivial { static constexpr bool is_in_situ = true; static constexpr bool is_trivial = true; template static std::size_t exec_(Op o, Data* src, Data* dst) noexcept { switch (o) { case Op::MOVE: std::memcpy(static_cast(dst), static_cast(src), Size); break; case Op::NUKE: break; case Op::HEAP: break; } return 0U; } template static constexpr std::size_t size_ = (size + adjust) & ~adjust; template static constexpr auto exec = exec_>; }; struct DispatchBigTrivial { static constexpr bool is_in_situ = false; static constexpr bool is_trivial = true; template static constexpr auto call = Base::template callBig; static constexpr bool is_align_large(size_t align) { return align > __STDCPP_DEFAULT_NEW_ALIGNMENT__; } template static std::size_t exec_(Op o, Data* src, Data* dst) noexcept { switch (o) { case Op::MOVE: dst->bigt = src->bigt; src->bigt = {}; break; case Op::NUKE: IsAlignLarge ? operator_delete( src->big, src->bigt.size, std::align_val_t(src->bigt.align)) : operator_delete(src->big, src->bigt.size); break; case Op::HEAP: break; } return src->bigt.size; } template static constexpr auto exec = exec_; FOLLY_ALWAYS_INLINE static void ctor( Data& data, void const* fun, std::size_t size, std::size_t align) noexcept { // cannot use type-specific new since type-specific new is overrideable // in concert with type-specific delete data.bigt.big = is_align_large(align) ? operator_new(size, std::align_val_t(align)) : operator_new(size); data.bigt.size = size; data.bigt.align = align; std::memcpy(data.bigt.big, fun, size); } }; struct DispatchSmall { static constexpr bool is_in_situ = true; static constexpr bool is_trivial = false; template static std::size_t exec(Op o, Data* src, Data* dst) noexcept { switch (o) { case Op::MOVE: ::new (static_cast(&dst->tiny)) Fun(static_cast( *static_cast(static_cast(&src->tiny)))); [[fallthrough]]; case Op::NUKE: static_cast(static_cast(&src->tiny))->~Fun(); break; case Op::HEAP: break; } return 0U; } }; struct DispatchBig { static constexpr bool is_in_situ = false; static constexpr bool is_trivial = false; template static std::size_t exec(Op o, Data* src, Data* dst) noexcept { switch (o) { case Op::MOVE: dst->big = src->big; src->big = nullptr; break; case Op::NUKE: delete static_cast(src->big); break; case Op::HEAP: break; } return sizeof(Fun); } }; template struct Dispatch; template <> struct Dispatch : DispatchSmallTrivial {}; template <> struct Dispatch : DispatchSmall {}; template <> struct Dispatch : DispatchBigTrivial {}; template <> struct Dispatch : DispatchBig {}; template < typename Fun, bool InSituSize = sizeof(Fun) <= sizeof(Data), bool InSituAlign = alignof(Fun) <= alignof(Data), bool InSituNoexcept = noexcept(Fun(FOLLY_DECLVAL(Fun)))> using DispatchOf = Dispatch< InSituSize && InSituAlign && InSituNoexcept, std::is_trivially_copyable_v>; // This cannot be done inseide `Function` class, because the word // `Function` there refers to the instantion and not the template. template constexpr bool is_instantiation_of_folly_function_v = is_instantiation_of_v; } // namespace function } // namespace detail template class Function final : private detail::function::FunctionTraits { // These utility types are defined outside of the template to reduce // the number of instantiations, and then imported in the class // namespace for convenience. using Data = detail::function::Data; using Op = detail::function::Op; using CoerceTag = detail::function::CoerceTag; using Traits = detail::function::FunctionTraits; using Call = typename Traits::Call; using Exec = std::size_t (*)(Op, Data*, Data*) noexcept; // The `data_` member is mutable to allow `constCastFunction` to work without // invoking undefined behavior. Const-correctness is only violated when // `FunctionType` is a const function type (e.g., `int() const`) and `*this` // is the result of calling `constCastFunction`. mutable Data data_{unsafe_default_initialized}; Call call_{&Traits::uninitCall}; Exec exec_{nullptr}; std::size_t exec(Op o, Data* src, Data* dst) const { if (!exec_) { return 0U; } return exec_(o, src, dst); } friend Traits; friend Function folly::constCastFunction<>( Function&&) noexcept; friend class Function; template Function(Function&& fun, CoerceTag) { using Fun = Function; if (fun) { data_.big = new Fun(static_cast(fun)); call_ = Traits::template call; exec_ = Exec(detail::function::DispatchBig::exec); } } Function(Function&& that, CoerceTag) noexcept : call_(that.call_), exec_(that.exec_) { that.call_ = &Traits::uninitCall; that.exec_ = nullptr; exec(Op::MOVE, &that.data_, &data_); } public: /** * Default constructor. Constructs an empty Function. */ constexpr Function() = default; // not copyable Function(const Function&) = delete; #ifdef __OBJC__ // Make sure Objective C blocks are copied template /*implicit*/ Function(ReturnType (^objCBlock)(Args... args)) : Function([blockCopy = (ReturnType(^)(Args...))[objCBlock copy]]( Args... args) { return blockCopy(args...); }){}; #endif /** * Move constructor */ Function(Function&& that) noexcept : call_(that.call_), exec_(that.exec_) { // that must be uninitialized before exec() call in the case of self move that.call_ = &Traits::uninitCall; that.exec_ = nullptr; exec(Op::MOVE, &that.data_, &data_); } /** * Constructs an empty `Function`. */ /* implicit */ constexpr Function(std::nullptr_t) noexcept {} /** * Constructs a new `Function` from any callable object that is _not_ a * `folly::Function`. * * \note `typename Traits::template IfSafeResult` prevents this overload * from being selected by overload resolution when `fun` is not a compatible * function. * * \note The noexcept requires some explanation. `is_in_situ` is true when the * decayed type fits within the internal buffer and is noexcept-movable. But * this ctor might copy, not move. What we need here, if this ctor does a * copy, is that this ctor be noexcept when the copy is noexcept. That is not * checked in `is_in_situ`, and shouldn't be, because once the `Function` is * constructed, the contained object is never copied. This check is for this * ctor only, in the case that this ctor does a copy. * * @param fun function pointers, pointers to static * member functions, `std::reference_wrapper` objects, `std::function` * objects, and arbitrary objects that implement `operator()` if the * parameter signature matches (i.e. it returns an object convertible to `R` * when called with `Args...`). */ template < typename Fun, typename = std::enable_if_t< !detail::function::is_instantiation_of_folly_function_v>, typename = typename Traits::template IfSafeResult> /* implicit */ constexpr Function(Fun fun) noexcept( detail::function::DispatchOf::is_in_situ) { using Dispatch = detail::function::DispatchOf; if constexpr (detail::function::IsNullptrCompatible) { if (detail::function::isEmptyFunction(fun)) { return; } } if constexpr (Dispatch::is_in_situ) { if constexpr ( !std::is_empty::value || !std::is_trivially_copyable_v) { ::new (&data_.tiny) Fun(static_cast(fun)); } } else { if constexpr (Dispatch::is_trivial) { Dispatch::ctor(data_, &fun, sizeof(Fun), alignof(Fun)); } else { data_.big = new Fun(static_cast(fun)); } } call_ = Traits::template call; exec_ = Exec(Dispatch::template exec); } /** * For move-constructing from a `folly::Function`. * * For a `Function` with a `const` function type, the object must be * callable from a `const`-reference, i.e. implement `operator() const`. * For a `Function` with a non-`const` function type, the object will * be called from a non-const reference, which means that it will execute * a non-const `operator()` if it is defined, and falls back to * `operator() const` otherwise. */ template < typename Signature, typename Fun = Function, // prevent gcc from making this a better match than move-ctor typename = std::enable_if_t::value>, typename = typename Traits::template IfSafeResult> Function(Function&& that) noexcept( noexcept(Function(std::move(that), CoerceTag{}))) : Function(std::move(that), CoerceTag{}) {} /** * If `ptr` is null, constructs an empty `Function`. Otherwise, * this constructor is equivalent to `Function(std::mem_fn(ptr))`. */ template < typename Member, typename Class, // Prevent this overload from being selected when `ptr` is not a // compatible member function pointer. typename = decltype(Function(std::mem_fn((Member Class::*)0)))> /* implicit */ Function(Member Class::*ptr) noexcept { if (ptr) { *this = std::mem_fn(ptr); } } ~Function() { exec(Op::NUKE, &data_, nullptr); } Function& operator=(const Function&) = delete; #ifdef __OBJC__ // Make sure Objective C blocks are copied template /* implicit */ Function& operator=(ReturnType (^objCBlock)(Args... args)) { (*this) = [blockCopy = (ReturnType(^)(Args...))[objCBlock copy]]( Args... args) { return blockCopy(args...); }; return *this; } #endif /** * Move assignment operator * * \note Leaves `that` in a valid but unspecified state. If `&that == this` * then `*this` is left in a valid but unspecified state. */ Function& operator=(Function&& that) noexcept { exec(Op::NUKE, &data_, nullptr); if (FOLLY_LIKELY(this != &that)) { that.exec(Op::MOVE, &that.data_, &data_); exec_ = that.exec_; call_ = that.call_; } that.exec_ = nullptr; that.call_ = &Traits::uninitCall; return *this; } /** * Assigns a callable object to this `Function`. If the operation fails, * `*this` is left unmodified. * * \note `typename = decltype(Function(FOLLY_DECLVAL(Fun&&)))` prevents this * overload from being selected by overload resolution when `fun` is not a * compatible function. */ template < typename Fun, typename..., bool Nx = noexcept(Function(FOLLY_DECLVAL(Fun&&)))> Function& operator=(Fun fun) noexcept(Nx) { // Doing this in place is more efficient when we can do so safely. if (Nx) { // Q: Why is is safe to destroy and reconstruct this object in place? // A: See the explanation in the move assignment operator. this->~Function(); ::new (this) Function(static_cast(fun)); } else { // Construct a temporary and (nothrow) swap. Function(static_cast(fun)).swap(*this); } return *this; } /** * For assigning from a `Function`. */ template < typename Signature, typename..., typename = typename Traits::template IfSafeResult>> Function& operator=(Function&& that) noexcept( noexcept(Function(std::move(that)))) { return (*this = Function(std::move(that))); } /** * Clears this `Function`. */ Function& operator=(std::nullptr_t) noexcept { return (*this = Function()); } /** * If `ptr` is null, clears this `Function`. Otherwise, this assignment * operator is equivalent to `*this = std::mem_fn(ptr)`. */ template auto operator=(Member Class::*ptr) noexcept // Prevent this overload from being selected when `ptr` is not a // compatible member function pointer. -> decltype(operator=(std::mem_fn(ptr))) { return ptr ? (*this = std::mem_fn(ptr)) : (*this = Function()); } /** * Call the wrapped callable object with the specified arguments. */ using Traits::operator(); /** * Exchanges the callable objects of `*this` and `that`. * * @param that a folly::Function ref */ void swap(Function& that) noexcept { std::swap(*this, that); } /** * Returns `true` if this `Function` contains a callable, i.e. is * non-empty. */ explicit operator bool() const noexcept { return exec_ != nullptr; } /** * Returns the size of the allocation made to store the callable on the * heap. If `0` is returned, there has been no additional memory * allocation because the callable is stored within the `Function` object. */ std::size_t heapAllocatedMemory() const noexcept { return exec(Op::HEAP, &data_, nullptr); } using typename Traits::SharedProxy; /** * Move this `Function` into a copyable callable object, of which all copies * share the state. */ SharedProxy asSharedProxy() && { return SharedProxy{std::move(*this)}; } /** * Construct a `std::function` by moving in the contents of this `Function`. * Note that the returned `std::function` will share its state (i.e. captured * data) across all copies you make of it, so be very careful when copying. */ std::function asStdFunction() && { return std::move(*this).asSharedProxy(); } }; template void swap(Function& lhs, Function& rhs) noexcept { lhs.swap(rhs); } template bool operator==(const Function& fn, std::nullptr_t) { return !fn; } template bool operator==(std::nullptr_t, const Function& fn) { return !fn; } template bool operator!=(const Function& fn, std::nullptr_t) { return !(fn == nullptr); } template bool operator!=(std::nullptr_t, const Function& fn) { return !(nullptr == fn); } /** * Casts a `folly::Function` from non-const to a const signature. * * NOTE: The name of `constCastFunction` should warn you that something * potentially dangerous is happening. As a matter of fact, using * `std::function` always involves this potentially dangerous aspect, which * is why it is not considered fully const-safe or even const-correct. * However, in most of the cases you will not need the dangerous aspect at all. * Either you do not require invocation of the function from a const context, * in which case you do not need to use `constCastFunction` and just * use a non-const `folly::Function`. Or, you may need invocation from const, * but the callable you are wrapping does not mutate its state (e.g. it is a * class object and implements `operator() const`, or it is a normal, * non-mutable lambda), in which case you can wrap the callable in a const * `folly::Function` directly, without using `constCastFunction`. * Only if you require invocation from a const context of a callable that * may mutate itself when invoked you have to go through the above procedure. * However, in that case what you do is potentially dangerous and requires * the equivalent of a `const_cast`, hence you need to call * `constCastFunction`. * * @param that a non-const folly::Function. */ template Function constCastFunction( Function&& that) noexcept { return Function{ std::move(that), detail::function::CoerceTag{}}; } template Function constCastFunction( Function&& that) noexcept { return std::move(that); } template Function constCastFunction( Function&& that) noexcept { return Function{ std::move(that), detail::function::CoerceTag{}}; } template Function constCastFunction( Function&& that) noexcept { return std::move(that); } namespace detail { template struct function_ctor_deduce_; template struct function_ctor_deduce_< std::enable_if_t>::value>, P> { using type = std::remove_pointer_t

; }; template struct function_ctor_deduce_, F> { using type = typename member_pointer_traits::member_type; }; template using function_ctor_deduce_t = typename function_ctor_deduce_::type; } // namespace detail template Function(F) -> Function>; /** * @class folly::FunctionRef * * A reference wrapper for callable objects * * FunctionRef is similar to std::reference_wrapper, but the template parameter * is the function signature type rather than the type of the referenced object. * A folly::FunctionRef is cheap to construct as it contains only a pointer to * the referenced callable and a pointer to a function which invokes the * callable. * * The user of FunctionRef must be aware of the reference semantics: storing a * copy of a FunctionRef is potentially dangerous and should be avoided unless * the referenced object definitely outlives the FunctionRef object. Thus any * function that accepts a FunctionRef parameter should only use it to invoke * the referenced function and not store a copy of it. Knowing that FunctionRef * itself has reference semantics, it is generally okay to use it to reference * lambdas that capture by reference. */ template class FunctionRef; template class FunctionRef final { template using CallArg = detail::function::CallArg; using Call = ReturnType (*)(CallArg..., void*); static ReturnType uninitCall(CallArg..., void*) { throw_exception(); } template < typename Fun, std::enable_if_t::value, int> = 0> static ReturnType call(CallArg... args, void* object) { using Pointer = std::add_pointer_t; return static_cast(invoke( static_cast(*static_cast(object)), static_cast(args)...)); } template < typename Fun, std::enable_if_t::value, int> = 0> static ReturnType call(CallArg... args, void* object) { return static_cast( invoke(reinterpret_cast(object), static_cast(args)...)); } void* object_{nullptr}; Call call_{&FunctionRef::uninitCall}; public: /** * Default constructor. Constructs an empty FunctionRef. * * Invoking it will throw std::bad_function_call. */ constexpr FunctionRef() = default; /** * Like default constructor. Constructs an empty FunctionRef. * * Invoking it will throw std::bad_function_call. */ constexpr explicit FunctionRef(std::nullptr_t) noexcept {} /** * Construct a FunctionRef from a reference to a callable object. If the * callable is considered to be an empty callable, the FunctionRef will be * empty. */ template < typename Fun, std::enable_if_t< Conjunction< Negation>>, is_invocable_r>::value, int> = 0> constexpr /* implicit */ FunctionRef(Fun&& fun) noexcept { // `Fun` may be a const type, in which case we have to do a const_cast // to store the address in a `void*`. This is safe because the `void*` // will be cast back to `Fun*` (which is a const pointer whenever `Fun` // is a const type) inside `FunctionRef::call` auto& ref = fun; // work around forwarding lint advice if constexpr ( // detail::function::IsNullptrCompatible>) { if (detail::function::isEmptyFunction(fun)) { return; } } auto ptr = std::addressof(ref); object_ = const_cast(static_cast(ptr)); call_ = &FunctionRef::template call; } /** * Constructs a FunctionRef from a pointer to a function. If the * pointer is nullptr, the FunctionRef will be empty. */ template < typename Fun, std::enable_if_t::value, int> = 0, std::enable_if_t, int> = 0> constexpr /* implicit */ FunctionRef(Fun* fun) noexcept { if (fun) { object_ = const_cast(reinterpret_cast(fun)); call_ = &FunctionRef::template call; } } ReturnType operator()(Args... args) const { return call_(static_cast(args)..., object_); } constexpr explicit operator bool() const noexcept { return object_; } constexpr friend bool operator==( FunctionRef ref, std::nullptr_t) noexcept { return ref.object_ == nullptr; } constexpr friend bool operator!=( FunctionRef ref, std::nullptr_t) noexcept { return ref.object_ != nullptr; } constexpr friend bool operator==( std::nullptr_t, FunctionRef ref) noexcept { return ref.object_ == nullptr; } constexpr friend bool operator!=( std::nullptr_t, FunctionRef ref) noexcept { return ref.object_ != nullptr; } }; } // namespace folly