newsmemory-ios-sdk/Frameworks/RCT-Folly.xcframework/ios-arm64/Headers/folly/ConstexprMath.h

977 lines
30 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <type_traits>
#include <folly/Portability.h>
#include <folly/lang/CheckedMath.h>
#include <folly/portability/Constexpr.h>
namespace folly {
/// numbers
///
/// mimic: std::numbers, C++20 (partial)
namespace numbers {
namespace detail {
template <typename T>
using enable_if_floating_t =
std::enable_if_t<std::is_floating_point<T>::value, T>;
}
/// e_v
///
/// mimic: std::numbers::e_v, C++20
template <typename T>
inline constexpr T e_v = detail::enable_if_floating_t<T>(
2.71828182845904523536028747135266249775724709369995L);
/// ln2_v
///
/// mimic: std::numbers::ln2_v, C++20
template <typename T>
inline constexpr T ln2_v = detail::enable_if_floating_t<T>(
0.69314718055994530941723212145817656807550013436025L);
/// e
///
/// mimic: std::numbers::e, C++20
inline constexpr double e = e_v<double>;
/// ln2
///
/// mimic: std::numbers::ln2, C++20
inline constexpr double ln2 = ln2_v<double>;
} // namespace numbers
/// floating_point_integral_constant
///
/// Like std::integral_constant but for floating-point types holding integral
/// values representable in an integral type.
template <typename T, typename S, S Value>
struct floating_point_integral_constant {
using value_type = T;
static constexpr value_type value = static_cast<value_type>(Value);
constexpr operator value_type() const noexcept { return value; }
constexpr value_type operator()() const noexcept { return value; }
};
// ----
namespace detail {
template <typename T>
constexpr size_t constexpr_iterated_squares_desc_size_(T const base) {
using lim = std::numeric_limits<T>;
size_t s = 1;
auto r = base;
while (r <= lim::max() / r) {
++s;
r *= r;
}
return s;
}
} // namespace detail
/// constexpr_iterated_squares_desc_size_v
///
/// Effectively calculates: floor(log(max_exponent)/log(base))
///
/// For use with constexpr_iterated_squares_desc below.
template <typename Base>
inline constexpr size_t constexpr_iterated_squares_desc_size_v =
detail::constexpr_iterated_squares_desc_size_(Base::value);
/// constexpr_iterated_squares_desc
///
/// A constexpr scaling array of integer powers-of-powers-of-two, descending,
/// with the associated powers-of-two.
///
/// scaling = [..., {8, b^8}, {4, b^4}, {2, b^2}, {1, b^1}] for b = base
///
/// Includes select constexpr scaling algorithms based on the scaling array.
///
/// The scaling array and the scaling algorithms are general-purpose, if niche.
/// They may be used by other constexpr math functions (floating-point) either
/// to improve runtime performance or to improve numerical approximations.
///
/// Some compilers fail to support passing some types as non-type template
/// params. In particular, long double is not universally supported. Therefore,
/// this utility takes its base as a type rather than as a value. For floating-
/// point integral bases, that is, bases of floating-point type but of integral
/// value, floating_point_integral_constant is the easiest parameterization.
template <typename T, std::size_t Size>
struct constexpr_iterated_squares_desc {
static_assert(Size > 0, "requires non-zero size");
using size_type = decltype(Size);
using base_type = T;
struct item_type {
size_type power;
base_type scale;
};
static constexpr size_type size = Size;
base_type base;
item_type scaling[size];
private:
using lim = std::numeric_limits<base_type>;
static_assert(
lim::max_exponent < std::numeric_limits<size_type>::max(),
"size_type too small for base_type");
public:
explicit constexpr constexpr_iterated_squares_desc(base_type r) noexcept
: base{r}, scaling{} {
assert(size <= detail::constexpr_iterated_squares_desc_size_(base));
size_type i = 0;
size_type p = 1;
while (true) { // a for-loop might cause multiplication overflow below
scaling[size - 1 - i] = {p, r};
if (++i == size) {
break;
}
p *= 2;
r *= r;
}
}
/// shrink
///
/// Returns scaling params of the form:
/// item_type{power, scale} with scale = base ^ power
/// With power the smallest nonnegative integer such that:
/// abs(num) / scale <= max
constexpr item_type shrink(base_type const num, base_type const max) const {
assert(max > base_type(0));
auto const rmax = max / base;
auto const snum = num < base_type(0) ? -num : num;
auto power = size_type(0);
auto scale = base_type(1);
if (!(snum / scale <= max)) {
for (auto const& i : scaling) {
auto const next = scale * i.scale;
auto const div = snum / next;
if (div <= rmax) {
continue;
}
power += i.power;
scale = next;
if (div <= max) {
break;
}
}
}
assert(snum / scale <= max);
return {power, scale};
}
/// growth
///
/// Returns scaling params of the form:
/// item_type{power, scale} with scale = base ^ power
/// With power the smallest nonnegative integer such that:
/// abs(num) * scale >= min
constexpr item_type growth(base_type const num, base_type const min) const {
assert(min > base_type(0));
auto const rmin = min * base;
auto const snum = num < base_type(0) ? -num : num;
auto power = size_type(0);
auto scale = base_type(1);
if (!(snum * scale >= min)) {
for (auto const& i : scaling) {
auto const next = scale * i.scale;
auto const mul = snum * next;
if (mul >= rmin) {
continue;
}
power += i.power;
scale = next;
if (mul >= min) {
break;
}
}
}
assert(snum * scale >= min);
return {power, scale};
}
};
/// constexpr_iterated_squares_desc_v
///
/// An instance of constexpr_iterated_squares_desc of max size with the given
/// base.
template <typename Base>
inline constexpr auto constexpr_iterated_squares_desc_v =
constexpr_iterated_squares_desc<
typename Base::value_type,
constexpr_iterated_squares_desc_size_v<Base>>{Base::value};
/// constexpr_iterated_squares_desc_2_v
///
/// An alias for constexpr_iterated_squares_desc_v with base 2, which is the
/// most common base to use with iterated-squares.
template <typename T>
constexpr auto& constexpr_iterated_squares_desc_2_v =
constexpr_iterated_squares_desc_v<
floating_point_integral_constant<T, int, 2>>;
// TLDR: Prefer using operator< for ordering. And when
// a and b are equivalent objects, we return b to make
// sorting stable.
// See http://stepanovpapers.com/notes.pdf for details.
template <typename T, typename... Ts>
constexpr T constexpr_max(T a, Ts... ts) {
T list[] = {ts..., a}; // 0-length arrays are illegal
for (auto i = 0u; i < sizeof...(Ts); ++i) {
a = list[i] < a ? a : list[i];
}
return a;
}
// When a and b are equivalent objects, we return a to
// make sorting stable.
template <typename T, typename... Ts>
constexpr T constexpr_min(T a, Ts... ts) {
T list[] = {ts..., a}; // 0-length arrays are illegal
for (auto i = 0u; i < sizeof...(Ts); ++i) {
a = list[i] < a ? list[i] : a;
}
return a;
}
template <typename T, typename Less>
constexpr T const& constexpr_clamp(
T const& v, T const& lo, T const& hi, Less less) {
T const& a = less(v, lo) ? lo : v;
T const& b = less(hi, a) ? hi : a;
return b;
}
template <typename T>
constexpr T const& constexpr_clamp(T const& v, T const& lo, T const& hi) {
return constexpr_clamp(v, lo, hi, std::less<T>{});
}
template <typename T>
constexpr bool constexpr_isnan(T const t) {
return t != t; // NOLINT
}
namespace detail {
template <typename T, typename = void>
struct constexpr_abs_helper {};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
static constexpr T go(T t) { return t < static_cast<T>(0) ? -t : t; }
};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<
std::is_integral<T>::value && !std::is_same<T, bool>::value &&
std::is_unsigned<T>::value>::type> {
static constexpr T go(T t) { return t; }
};
template <typename T>
struct constexpr_abs_helper<
T,
typename std::enable_if<
std::is_integral<T>::value && !std::is_same<T, bool>::value &&
std::is_signed<T>::value>::type> {
static constexpr typename std::make_unsigned<T>::type go(T t) {
return typename std::make_unsigned<T>::type(t < static_cast<T>(0) ? -t : t);
}
};
} // namespace detail
template <typename T>
constexpr auto constexpr_abs(T t)
-> decltype(detail::constexpr_abs_helper<T>::go(t)) {
return detail::constexpr_abs_helper<T>::go(t);
}
namespace detail {
template <typename T>
constexpr T constexpr_log2_(T a, T e) {
return e == T(1) ? a : constexpr_log2_(a + T(1), e / T(2));
}
template <typename T>
constexpr T constexpr_log2_ceil_(T l2, T t) {
return l2 + T(T(1) << l2 < t ? 1 : 0);
}
} // namespace detail
template <typename T>
constexpr T constexpr_log2(T t) {
return detail::constexpr_log2_(T(0), t);
}
template <typename T>
constexpr T constexpr_log2_ceil(T t) {
return detail::constexpr_log2_ceil_(constexpr_log2(t), t);
}
/// constexpr_trunc
///
/// mimic: std::trunc (C++23)
template <
typename T,
std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
constexpr T constexpr_trunc(T const t) {
using lim = std::numeric_limits<T>;
using int_type = std::uintmax_t;
using int_lim = std::numeric_limits<int_type>;
static_assert(lim::radix == 2, "non-binary radix");
static_assert(lim::digits <= int_lim::digits, "overwide mantissa");
constexpr auto bound = static_cast<T>(std::uintmax_t(1) << (lim::digits - 1));
auto const neg = !constexpr_isnan(t) && t < T(0);
auto const s = neg ? -t : t;
if (constexpr_isnan(t) || t == T(0) || !(s < bound)) {
return t;
}
if (s < T(1)) {
return neg ? -T(0) : T(0);
}
auto const r = static_cast<T>(static_cast<int_type>(s));
return neg ? -r : r;
}
template <typename T, std::enable_if_t<std::is_integral<T>::value, int> = 0>
constexpr T constexpr_trunc(T const t) {
return t;
}
/// constexpr_round
///
/// mimic: std::round (C++23)
template <typename T>
constexpr T constexpr_round(T const t) {
constexpr auto half = T(1) / T(2);
auto const same = constexpr_isnan(t) || t == T(0);
return same ? t : constexpr_trunc(t < T(0) ? t - half : t + half);
}
/// constexpr_floor
///
/// mimic: std::floor (C++23)
template <typename T>
constexpr T constexpr_floor(T const t) {
auto const s = constexpr_trunc(t);
return t < s ? s - T(1) : s;
}
/// constexpr_ceil
///
/// mimic: std::ceil (C++23)
template <typename T>
constexpr T constexpr_ceil(T const t) {
auto const s = constexpr_trunc(t);
return s < t ? s + T(1) : s;
}
/// constexpr_ceil
///
/// The least integer at least t that round divides.
template <typename T>
constexpr T constexpr_ceil(T t, T round) {
return round == T(0)
? t
: ((t + (t <= T(0) ? T(0) : round - T(1))) / round) * round;
}
/// constexpr_mult
///
/// Multiply two values, allowing for constexpr floating-pooint overflow to
/// infinity.
template <typename T>
constexpr T constexpr_mult(T const a, T const b) {
using lim = std::numeric_limits<T>;
if (constexpr_isnan(a) || constexpr_isnan(b)) {
return constexpr_isnan(a) ? a : b;
}
if (std::is_floating_point<T>::value) {
constexpr auto inf = lim::infinity();
auto const ax = constexpr_abs(a);
auto const bx = constexpr_abs(b);
if ((ax == T(0) && bx == inf) || (bx == T(0) && ax == inf)) {
return lim::quiet_NaN();
}
// floating-point multiplication overflow, ie where multiplication of two
// finite values overflows to infinity of either sign, is not constexpr per
// gcc
// floating-point division overflow, ie where division of two finite values
// overflows to infinity of either sign, is not constexpr per gcc
// floating-point division by zero is not constexpr per any compiler, but we
// use it in the checks for the other two conditions
if (ax != inf && bx != inf && T(1) < bx && lim::max() / bx < ax) {
auto const a_neg = static_cast<bool>(a < T(0));
auto const b_neg = static_cast<bool>(b < T(0));
auto const sign = a_neg == b_neg ? T(1) : T(-1);
return sign * inf;
}
}
return a * b;
}
namespace detail {
template <
typename T,
typename E,
std::enable_if_t<std::is_signed<E>::value, int> = 1>
constexpr T constexpr_ipow(T const base, E const exp) {
if (std::is_floating_point<T>::value) {
if (exp < E(0)) {
return T(1) / constexpr_ipow(base, -exp);
}
if (exp == E(0)) {
return T(1);
}
if (constexpr_isnan(base)) {
return base;
}
}
assert(!(exp < E(0)) && "negative exponent with integral base");
if (exp == E(0)) {
return T(1);
}
if (exp == E(1)) {
return base;
}
auto const hexp = constexpr_trunc(exp / E(2));
auto const div = constexpr_ipow(base, hexp);
auto const rem = hexp * E(2) == exp ? T(1) : base;
return constexpr_mult(constexpr_mult(div, div), rem);
}
template <
typename T,
typename E,
std::enable_if_t<std::is_unsigned<E>::value, int> = 1>
constexpr T constexpr_ipow(T const base, E const exp) {
if (std::is_floating_point<T>::value) {
if (exp == E(0)) {
return T(1);
}
if (constexpr_isnan(base)) {
return base;
}
}
if (exp == E(0)) {
return T(1);
}
if (exp == E(1)) {
return base;
}
auto const hexp = constexpr_trunc(exp / E(2));
auto const div = constexpr_ipow(base, hexp);
auto const rem = hexp * E(2) == exp ? T(1) : base;
return constexpr_mult(constexpr_mult(div, div), rem);
}
} // namespace detail
/// constexpr_exp
///
/// Calculates an approximation of the mathematical function exp(num). Usable in
/// constant evaluations. Like std::exp, which becomes constexpr in C++26.
///
/// The integer overload uses iterated squaring and multiplication. The
/// floating-point overlaod naively evaluates the taylor series of exp(num)
/// until approximate convergence.
///
/// mimic: std::exp (C++23, C++26)
template <
typename T,
typename N,
std::enable_if_t<
std::is_floating_point<T>::value && std::is_integral<N>::value &&
!std::is_same<N, bool>::value,
int> = 0>
constexpr T constexpr_exp(N const power) {
auto const npower = constexpr_abs(power);
auto const result = detail::constexpr_ipow(numbers::e_v<T>, npower);
return power < N(0) ? T(1) / result : result;
}
template <
typename N,
std::enable_if_t<
std::is_integral<N>::value && !std::is_same<N, bool>::value,
int> = 0>
constexpr double constexpr_exp(N const power) {
return constexpr_exp<double>(power);
}
template <
typename T,
std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
constexpr T constexpr_exp(T const power) {
using lim = std::numeric_limits<T>;
// edge cases
if (constexpr_isnan(power)) {
return power;
}
if (power == -lim::infinity()) {
return +T(0);
}
if (power == +lim::infinity()) {
return power;
}
// convergence works better with positive powers since signs do not alternate
auto const abspower = constexpr_abs(power);
// convergence must short-circuit when terms grow to floating-point infinity
auto const bound = T(1) < abspower ? lim::max() / abspower : lim::infinity();
// term #index = power * coeff
auto index = size_t(0);
auto term = T(1);
// result = sum of terms
auto result = T(1);
// sum the terms until ~convergence
while (!(constexpr_abs(term) < lim::epsilon())) {
if (bound < term) {
return power < T(0) ? T(0) : lim::infinity();
}
index += 1;
term = term * abspower / index;
result += term;
}
return power < T(0) ? T(1) / result : result;
}
/// constexpr_log
///
/// Calculates an approximation of the natural logarithm ln(num).
///
/// The implementation uses a quickly-converging, high-precision iterative
/// technique as described in:
/// https://en.wikipedia.org/wiki/Natural_logarithm#High_precision
///
/// The technique works best with numbers that are close enough to 1, so the
/// implementation uses a quick shrink/growth technique as described in:
/// https://en.wikipedia.org/wiki/Natural_logarithm#Efficient_computation
template <
typename T,
std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
constexpr T constexpr_log(T const num) {
using lim = std::numeric_limits<T>;
constexpr auto& isq = constexpr_iterated_squares_desc_2_v<T>;
// edge cases
if (constexpr_isnan(num)) {
return num;
}
if (num < T(0)) {
return lim::quiet_NaN();
}
if (num == T(0)) {
return -lim::infinity();
}
if (num == lim::infinity()) {
return num;
}
// compression
auto const shrink = isq.shrink(num, isq.base);
auto const growth = isq.growth(num, T(1));
auto const scaled = num * growth.scale / shrink.scale;
assert(scaled <= isq.base);
assert(scaled >= T(1));
auto sum = T(0);
auto delta = T(2);
while (constexpr_abs(delta) >= lim::epsilon()) {
auto expterm = constexpr_exp(sum);
delta = T(2) * (scaled - expterm) / (scaled + expterm);
sum += delta;
}
auto const ln2 = numbers::ln2_v<T>;
return sum - growth.power * ln2 + shrink.power * ln2;
}
/// constexpr_pow
///
/// Calculates an approximation of the value of base raised to the exponent exp.
///
/// The implementation uses iterated squaring and multiplication for the integer
/// part of the exponent and uses the identity x^y = exp(y * log(x)) for the
/// fractional part of the exponent.
///
/// Notes:
/// * Forbids base of +0 or -0 with finite non-positive exponent: in part since
/// the plausible infinite result would be sensitive to the sign of the zero;
/// and in part since std::pow would be required or permitted to raise error
/// div-by-zero.
/// * Forbids finite negative base with finite non-integer exponent: in part
/// since std::pow would be required to raise error invalid.
///
/// mimic: std::pow (C++26)
template <
typename T,
typename E,
std::enable_if_t<
std::is_integral<E>::value && !std::is_same<E, bool>::value,
int> = 0>
constexpr T constexpr_pow(T const base, E const exp) {
return detail::constexpr_ipow(base, exp);
}
template <
typename T,
std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
constexpr T constexpr_pow(T const base, T const exp) {
using lim = std::numeric_limits<T>;
// edge cases
if (exp == T(0)) {
return T(1);
}
if (constexpr_isnan(base)) {
return base;
}
if (exp == lim::infinity() || exp == -lim::infinity()) {
auto const abase = constexpr_abs(base);
if (abase < T(1)) {
return exp == lim::infinity() ? T(0) : lim::infinity();
}
if (T(1) < abase) {
return exp == lim::infinity() ? lim::infinity() : T(0);
}
return T(1);
}
if (base == T(1)) {
return base;
}
if (constexpr_isnan(exp)) {
return exp;
}
assert(base != T(0) || exp > T(0)); // error div-by-zero
if (base == lim::infinity()) {
return exp < T(0) ? T(0) : lim::infinity();
}
if (base == -lim::infinity()) {
auto const oddi = //
exp == constexpr_trunc(exp) &&
exp != constexpr_trunc(exp / T(2)) * T(2);
return (oddi ? -T(1) : T(1)) * (exp < T(0) ? T(0) : lim::infinity());
}
if (base == T(0)) {
auto const oddi = //
exp == constexpr_trunc(exp) &&
exp != constexpr_trunc(exp / T(2)) * T(2);
return oddi ? base : T(0);
}
if (exp < T(0)) {
return T(1) / constexpr_pow(base, -exp);
}
// as an identity: x^y = exp(y * log(x)); but calculation is imprecise ... so,
// for better precision, split the calculation into its integral-power and its
// fractional-power components
// as a cost, the complexity of constexpr_ipow here is logarithmic in y, i.e.,
// linear in the logarithm of y, which can be prohibitive
auto const exp_trunc = constexpr_trunc(exp);
assert(T(0) < base || exp == exp_trunc); // error invalid
auto const exp_fract = exp - exp_trunc;
auto const anyi = exp_fract == T(0);
return constexpr_mult(
detail::constexpr_ipow(base, exp_trunc),
anyi ? T(1) : constexpr_exp(exp_fract * constexpr_log(base)));
}
/// constexpr_find_last_set
///
/// Return the 1-based index of the most significant bit which is set.
/// For x > 0, constexpr_find_last_set(x) == 1 + floor(log2(x)).
template <typename T>
constexpr std::size_t constexpr_find_last_set(T const t) {
using U = std::make_unsigned_t<T>;
return t == T(0) ? 0 : 1 + constexpr_log2(static_cast<U>(t));
}
namespace detail {
template <typename U>
constexpr std::size_t constexpr_find_first_set_(
std::size_t s, std::size_t a, U const u) {
return s == 0 ? a
: constexpr_find_first_set_(
s / 2, a + s * bool((u >> a) % (U(1) << s) == U(0)), u);
}
} // namespace detail
/// constexpr_find_first_set
///
/// Return the 1-based index of the least significant bit which is set.
/// For x > 0, the exponent in the largest power of two which does not divide x.
template <typename T>
constexpr std::size_t constexpr_find_first_set(T t) {
using U = std::make_unsigned_t<T>;
using size = std::integral_constant<std::size_t, sizeof(T) * 4>;
return t == T(0)
? 0
: 1 + detail::constexpr_find_first_set_(size{}, 0, static_cast<U>(t));
}
template <typename T>
constexpr T constexpr_add_overflow_clamped(T a, T b) {
using L = std::numeric_limits<T>;
using M = std::intmax_t;
static_assert(
!std::is_integral<T>::value || sizeof(T) <= sizeof(M),
"Integral type too large!");
if (!folly::is_constant_evaluated_or(true)) {
if constexpr (std::is_integral_v<T>) {
T ret{};
if (FOLLY_UNLIKELY(!checked_add(&ret, a, b))) {
if constexpr (std::is_signed_v<T>) {
// Could be either overflow or underflow for signed types.
// Can only be underflow if both inputs are negative.
if (a < 0 && b < 0) {
return L::min();
}
}
return L::max();
}
return ret;
}
}
// clang-format off
return
// don't do anything special for non-integral types.
!std::is_integral<T>::value ? a + b :
// for narrow integral types, just convert to intmax_t.
sizeof(T) < sizeof(M)
? T(constexpr_clamp(
static_cast<M>(a) + static_cast<M>(b),
static_cast<M>(L::min()),
static_cast<M>(L::max()))) :
// when a >= 0, cannot add more than `MAX - a` onto a.
!(a < 0) ? a + constexpr_min(b, T(L::max() - a)) :
// a < 0 && b >= 0, `a + b` will always be in valid range of type T.
!(b < 0) ? a + b :
// a < 0 && b < 0, keep the result >= MIN.
a + constexpr_max(b, T(L::min() - a));
// clang-format on
}
template <typename T>
constexpr T constexpr_sub_overflow_clamped(T a, T b) {
using L = std::numeric_limits<T>;
using M = std::intmax_t;
static_assert(
!std::is_integral<T>::value || sizeof(T) <= sizeof(M),
"Integral type too large!");
// clang-format off
return
// don't do anything special for non-integral types.
!std::is_integral<T>::value ? a - b :
// for unsigned type, keep result >= 0.
std::is_unsigned<T>::value ? (a < b ? 0 : a - b) :
// for narrow signed integral types, just convert to intmax_t.
sizeof(T) < sizeof(M)
? T(constexpr_clamp(
static_cast<M>(a) - static_cast<M>(b),
static_cast<M>(L::min()),
static_cast<M>(L::max()))) :
// (a >= 0 && b >= 0) || (a < 0 && b < 0), `a - b` will always be valid.
(a < 0) == (b < 0) ? a - b :
// MIN < b, so `-b` should be in valid range (-MAX <= -b <= MAX),
// convert subtraction to addition.
L::min() < b ? constexpr_add_overflow_clamped(a, T(-b)) :
// -b = -MIN = (MAX + 1) and a <= -1, result is in valid range.
a < 0 ? a - b :
// -b = -MIN = (MAX + 1) and a >= 0, result > MAX.
L::max();
// clang-format on
}
// clamp_cast<> provides sane numeric conversions from float point numbers to
// integral numbers, and between different types of integral numbers. It helps
// to avoid unexpected bugs introduced by bad conversion, and undefined behavior
// like overflow when casting float point numbers to integral numbers.
//
// When doing clamp_cast<Dst>(value), if `value` is in valid range of Dst,
// it will give correct result in Dst, equal to `value`.
//
// If `value` is outside the representable range of Dst, it will be clamped to
// MAX or MIN in Dst, instead of being undefined behavior.
//
// Float NaNs are converted to 0 in integral type.
//
// Here's some comparison with static_cast<>:
// (with FB-internal gcc-5-glibc-2.23 toolchain)
//
// static_cast<int32_t>(NaN) = 6
// clamp_cast<int32_t>(NaN) = 0
//
// static_cast<int32_t>(9999999999.0f) = -348639895
// clamp_cast<int32_t>(9999999999.0f) = 2147483647
//
// static_cast<int32_t>(2147483647.0f) = -348639895
// clamp_cast<int32_t>(2147483647.0f) = 2147483647
//
// static_cast<uint32_t>(4294967295.0f) = 0
// clamp_cast<uint32_t>(4294967295.0f) = 4294967295
//
// static_cast<uint32_t>(-1) = 4294967295
// clamp_cast<uint32_t>(-1) = 0
//
// static_cast<int16_t>(32768u) = -32768
// clamp_cast<int16_t>(32768u) = 32767
template <typename Dst, typename Src>
constexpr typename std::enable_if<std::is_integral<Src>::value, Dst>::type
constexpr_clamp_cast(Src src) {
static_assert(
std::is_integral<Dst>::value && sizeof(Dst) <= sizeof(int64_t),
"constexpr_clamp_cast can only cast into integral type (up to 64bit)");
using L = std::numeric_limits<Dst>;
// clang-format off
return
// Check if Src and Dst have same signedness.
std::is_signed<Src>::value == std::is_signed<Dst>::value
? (
// Src and Dst have same signedness. If sizeof(Src) <= sizeof(Dst),
// we can safely convert Src to Dst without any loss of accuracy.
sizeof(Src) <= sizeof(Dst) ? Dst(src) :
// If Src is larger in size, we need to clamp it to valid range in Dst.
Dst(constexpr_clamp(src, Src(L::min()), Src(L::max()))))
// Src and Dst have different signedness.
// Check if it's signed -> unsigend cast.
: std::is_signed<Src>::value && std::is_unsigned<Dst>::value
? (
// If src < 0, the result should be 0.
src < 0 ? Dst(0) :
// Otherwise, src >= 0. If src can fit into Dst, we can safely cast it
// without loss of accuracy.
sizeof(Src) <= sizeof(Dst) ? Dst(src) :
// If Src is larger in size than Dst, we need to ensure the result is
// at most Dst MAX.
Dst(constexpr_min(src, Src(L::max()))))
// It's unsigned -> signed cast.
: (
// Since Src is unsigned, and Dst is signed, Src can fit into Dst only
// when sizeof(Src) < sizeof(Dst).
sizeof(Src) < sizeof(Dst) ? Dst(src) :
// If Src does not fit into Dst, we need to ensure the result is at most
// Dst MAX.
Dst(constexpr_min(src, Src(L::max()))));
// clang-format on
}
namespace detail {
// Upper/lower bound values that could be accurately represented in both
// integral and float point types.
constexpr double kClampCastLowerBoundDoubleToInt64F = -9223372036854774784.0;
constexpr double kClampCastUpperBoundDoubleToInt64F = 9223372036854774784.0;
constexpr double kClampCastUpperBoundDoubleToUInt64F = 18446744073709549568.0;
constexpr float kClampCastLowerBoundFloatToInt32F = -2147483520.0f;
constexpr float kClampCastUpperBoundFloatToInt32F = 2147483520.0f;
constexpr float kClampCastUpperBoundFloatToUInt32F = 4294967040.0f;
// This works the same as constexpr_clamp, but the comparison are done in Src
// to prevent any implicit promotions.
template <typename D, typename S>
constexpr D constexpr_clamp_cast_helper(S src, S sl, S su, D dl, D du) {
return src < sl ? dl : (src > su ? du : D(src));
}
} // namespace detail
template <typename Dst, typename Src>
constexpr typename std::enable_if<std::is_floating_point<Src>::value, Dst>::type
constexpr_clamp_cast(Src src) {
static_assert(
std::is_integral<Dst>::value && sizeof(Dst) <= sizeof(int64_t),
"constexpr_clamp_cast can only cast into integral type (up to 64bit)");
using L = std::numeric_limits<Dst>;
// clang-format off
return
// Special case: cast NaN into 0.
constexpr_isnan(src) ? Dst(0) :
// using `sizeof(Src) > sizeof(Dst)` as a heuristic that Dst can be
// represented in Src without loss of accuracy.
// see: https://en.wikipedia.org/wiki/Floating-point_arithmetic
sizeof(Src) > sizeof(Dst) ?
detail::constexpr_clamp_cast_helper(
src, Src(L::min()), Src(L::max()), L::min(), L::max()) :
// sizeof(Src) < sizeof(Dst) only happens when doing cast of
// 32bit float -> u/int64_t.
// Losslessly promote float into double, change into double -> u/int64_t.
sizeof(Src) < sizeof(Dst) ? (
src >= 0.0
? constexpr_clamp_cast<Dst>(
constexpr_clamp_cast<std::uint64_t>(double(src)))
: constexpr_clamp_cast<Dst>(
constexpr_clamp_cast<std::int64_t>(double(src)))) :
// The following are for sizeof(Src) == sizeof(Dst).
std::is_same<Src, double>::value && std::is_same<Dst, int64_t>::value ?
detail::constexpr_clamp_cast_helper(
double(src),
detail::kClampCastLowerBoundDoubleToInt64F,
detail::kClampCastUpperBoundDoubleToInt64F,
L::min(),
L::max()) :
std::is_same<Src, double>::value && std::is_same<Dst, uint64_t>::value ?
detail::constexpr_clamp_cast_helper(
double(src),
0.0,
detail::kClampCastUpperBoundDoubleToUInt64F,
L::min(),
L::max()) :
std::is_same<Src, float>::value && std::is_same<Dst, int32_t>::value ?
detail::constexpr_clamp_cast_helper(
float(src),
detail::kClampCastLowerBoundFloatToInt32F,
detail::kClampCastUpperBoundFloatToInt32F,
L::min(),
L::max()) :
detail::constexpr_clamp_cast_helper(
float(src),
0.0f,
detail::kClampCastUpperBoundFloatToUInt32F,
L::min(),
L::max());
// clang-format on
}
} // namespace folly