1408 lines
43 KiB
C++
1408 lines
43 KiB
C++
/*
|
|
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
|
|
#include <folly/Portability.h>
|
|
|
|
namespace folly {
|
|
|
|
#if defined(__cpp_lib_type_identity) && __cpp_lib_type_identity >= 201806L
|
|
|
|
using std::type_identity;
|
|
using std::type_identity_t;
|
|
|
|
#else
|
|
|
|
/// type_identity_t
|
|
/// type_identity
|
|
///
|
|
/// mimic: std::type_identity_t, std::type_identity, c++20
|
|
template <typename T>
|
|
struct type_identity {
|
|
using type = T;
|
|
};
|
|
template <typename T>
|
|
using type_identity_t = typename type_identity<T>::type;
|
|
|
|
#endif
|
|
|
|
/// tag_t
|
|
/// tag
|
|
///
|
|
/// A generic type-list value type and value.
|
|
///
|
|
/// A type-list is a class template parameterized by a pack of types.
|
|
template <typename...>
|
|
struct tag_t {};
|
|
template <typename... T>
|
|
inline constexpr tag_t<T...> tag{};
|
|
|
|
/// vtag_t
|
|
/// vtag
|
|
///
|
|
/// A generic value-list value type and value.
|
|
///
|
|
/// A value-list is a class template parameterized by a pack of values.
|
|
template <auto...>
|
|
struct vtag_t {};
|
|
template <auto... V>
|
|
inline constexpr vtag_t<V...> vtag{};
|
|
|
|
template <std::size_t I>
|
|
using index_constant = std::integral_constant<std::size_t, I>;
|
|
|
|
/// always_false
|
|
///
|
|
/// A variable template that is always false but requires template arguments to
|
|
/// be provided (which are then ignored). This is useful in very specific cases
|
|
/// where we want type-dependent expressions to defer static_assert's.
|
|
///
|
|
/// A common use-case is for exhaustive constexpr if branches:
|
|
///
|
|
/// template <typename T>
|
|
/// void foo(T value) {
|
|
/// if constexpr (std::is_integral_v<T>) foo_integral(value);
|
|
/// else if constexpr (std::is_same_v<T, std::string>) foo_string(value);
|
|
/// else static_assert(always_false<T>, "Unsupported type");
|
|
/// }
|
|
///
|
|
/// If we had used static_assert(false), then this would always fail to compile,
|
|
/// even if foo is never instantiated!
|
|
///
|
|
/// Another use case is if a template that is expected to always be specialized
|
|
/// is erroneously instantiated with the base template.
|
|
///
|
|
/// template <typename T>
|
|
/// struct Foo {
|
|
/// static_assert(always_false<T>, "Unsupported type");
|
|
/// };
|
|
/// template <>
|
|
/// struct Foo<int> {};
|
|
///
|
|
/// Foo<int> a; // fine
|
|
/// Foo<std::string> b; // fails! And you get a nice (custom) error message
|
|
///
|
|
/// This is similar to leaving the base template undefined but we get a nicer
|
|
/// compiler error message with static_assert.
|
|
template <typename...>
|
|
inline constexpr bool always_false = false;
|
|
|
|
namespace detail {
|
|
|
|
template <typename Void, typename T>
|
|
struct require_sizeof_ {
|
|
static_assert(always_false<T>, "application of sizeof fails substitution");
|
|
};
|
|
template <typename T>
|
|
struct require_sizeof_<decltype(void(sizeof(T))), T> {
|
|
template <typename V>
|
|
using apply_t = V;
|
|
|
|
static constexpr std::size_t size = sizeof(T);
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// require_sizeof
|
|
///
|
|
/// Equivalent to sizeof, but with a static_assert enforcing that application of
|
|
/// sizeof would not fail substitution.
|
|
template <typename T>
|
|
constexpr std::size_t require_sizeof = detail::require_sizeof_<void, T>::size;
|
|
|
|
/// is_unbounded_array_v
|
|
/// is_unbounded_array
|
|
///
|
|
/// A trait variable and type to check if a given type is an unbounded array.
|
|
///
|
|
/// mimic: std::is_unbounded_array_d, std::is_unbounded_array (C++20)
|
|
template <typename T>
|
|
inline constexpr bool is_unbounded_array_v = false;
|
|
template <typename T>
|
|
inline constexpr bool is_unbounded_array_v<T[]> = true;
|
|
template <typename T>
|
|
struct is_unbounded_array : std::bool_constant<is_unbounded_array_v<T>> {};
|
|
|
|
/// is_bounded_array_v
|
|
/// is_bounded_array
|
|
///
|
|
/// A trait variable and type to check if a given type is a bounded array.
|
|
///
|
|
/// mimic: std::is_bounded_array_d, std::is_bounded_array (C++20)
|
|
template <typename T>
|
|
inline constexpr bool is_bounded_array_v = false;
|
|
template <typename T, std::size_t S>
|
|
inline constexpr bool is_bounded_array_v<T[S]> = true;
|
|
template <typename T>
|
|
struct is_bounded_array : std::bool_constant<is_bounded_array_v<T>> {};
|
|
|
|
/// is_instantiation_of_v
|
|
/// is_instantiation_of
|
|
/// instantiated_from
|
|
/// uncvref_instantiated_from
|
|
///
|
|
/// A trait variable and type to check if a given type is an instantiation of a
|
|
/// class template. And corresponding concepts.
|
|
///
|
|
/// Note that this only works with type template parameters. It does not work
|
|
/// with non-type template parameters, template template parameters, or alias
|
|
/// templates.
|
|
template <template <typename...> class, typename>
|
|
inline constexpr bool is_instantiation_of_v = false;
|
|
template <template <typename...> class C, typename... T>
|
|
inline constexpr bool is_instantiation_of_v<C, C<T...>> = true;
|
|
template <template <typename...> class C, typename... T>
|
|
struct is_instantiation_of
|
|
: std::bool_constant<is_instantiation_of_v<C, T...>> {};
|
|
|
|
#if defined(__cpp_concepts)
|
|
|
|
template <typename T, template <typename...> class Templ>
|
|
concept instantiated_from = is_instantiation_of_v<Templ, T>;
|
|
|
|
template <typename T, template <typename...> class Templ>
|
|
concept uncvref_instantiated_from =
|
|
is_instantiation_of_v<Templ, std::remove_cvref_t<T>>;
|
|
|
|
#endif
|
|
|
|
/// member_pointer_traits
|
|
///
|
|
/// For a member-pointer, reveals its constituent member-type and object-type.
|
|
///
|
|
/// Works for both member-object-pointer and member-function-pointer.
|
|
template <typename>
|
|
struct member_pointer_traits;
|
|
template <typename M, typename O>
|
|
struct member_pointer_traits<M O::*> {
|
|
using member_type = M;
|
|
using object_type = O;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
struct is_constexpr_default_constructible_ {
|
|
template <typename T>
|
|
static constexpr auto make(tag_t<T>) -> decltype(void(T()), 0) {
|
|
return (void(T()), 0);
|
|
}
|
|
// second param should just be: int = (void(T()), 0)
|
|
// but under clang 10, crash: https://bugs.llvm.org/show_bug.cgi?id=47620
|
|
// and, with assertions disabled, expectation failures showing compiler
|
|
// deviation from the language spec
|
|
// xcode renumbers clang versions so detection is tricky, but, if detection
|
|
// were desired, a combination of __apple_build_version__ and __clang_major__
|
|
// may be used to reduce frontend overhead under correct compilers: clang 12
|
|
// under xcode and clang 10 otherwise
|
|
template <typename T, int = make(tag<T>)>
|
|
static std::true_type sfinae(T*);
|
|
static std::false_type sfinae(void*);
|
|
template <typename T>
|
|
static constexpr bool apply =
|
|
!require_sizeof<T> || decltype(sfinae(static_cast<T*>(nullptr)))::value;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// is_constexpr_default_constructible_v
|
|
/// is_constexpr_default_constructible
|
|
///
|
|
/// A trait variable and type which determines whether the type parameter is
|
|
/// constexpr default-constructible, that is, default-constructible in a
|
|
/// constexpr context.
|
|
template <typename T>
|
|
inline constexpr bool is_constexpr_default_constructible_v =
|
|
detail::is_constexpr_default_constructible_::apply<T>;
|
|
template <typename T>
|
|
struct is_constexpr_default_constructible
|
|
: std::bool_constant<is_constexpr_default_constructible_v<T>> {};
|
|
|
|
/***
|
|
* _t
|
|
*
|
|
* Instead of:
|
|
*
|
|
* using decayed = typename std::decay<T>::type;
|
|
*
|
|
* With the C++14 standard trait aliases, we could use:
|
|
*
|
|
* using decayed = std::decay_t<T>;
|
|
*
|
|
* Without them, we could use:
|
|
*
|
|
* using decayed = _t<std::decay<T>>;
|
|
*
|
|
* Also useful for any other library with template types having dependent
|
|
* member types named `type`, like the standard trait types.
|
|
*/
|
|
template <typename T>
|
|
using _t = typename T::type;
|
|
|
|
/**
|
|
* A type trait to remove all const volatile and reference qualifiers on a
|
|
* type T
|
|
*/
|
|
template <typename T>
|
|
struct remove_cvref {
|
|
using type =
|
|
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
|
|
};
|
|
template <typename T>
|
|
using remove_cvref_t = typename remove_cvref<T>::type;
|
|
|
|
namespace detail {
|
|
template <typename Src>
|
|
struct like_ {
|
|
template <typename Dst>
|
|
using apply = Dst;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src const> {
|
|
template <typename Dst>
|
|
using apply = Dst const;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src volatile> {
|
|
template <typename Dst>
|
|
using apply = Dst volatile;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src const volatile> {
|
|
template <typename Dst>
|
|
using apply = Dst const volatile;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src&> {
|
|
template <typename Dst>
|
|
using apply = typename like_<Src>::template apply<Dst>&;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src&&> {
|
|
template <typename Dst>
|
|
using apply = typename like_<Src>::template apply<Dst>&&;
|
|
};
|
|
} // namespace detail
|
|
|
|
// mimic: like_t, p0847r0
|
|
template <typename Src, typename Dst>
|
|
using like_t = typename detail::like_<Src>::template apply<remove_cvref_t<Dst>>;
|
|
|
|
// mimic: like, p0847r0
|
|
template <typename Src, typename Dst>
|
|
struct like {
|
|
using type = like_t<Src, Dst>;
|
|
};
|
|
|
|
#if defined(__cpp_concepts)
|
|
|
|
/**
|
|
* Concept to check that a type is same as a given type,
|
|
* when stripping qualifiers and refernces.
|
|
* Especially useful for perfect forwarding of a specific type.
|
|
*
|
|
* Example:
|
|
*
|
|
* void foo(folly::uncvref_same_as<std::vector<int>> auto&& vec);
|
|
*
|
|
*/
|
|
template <typename Ref, typename To>
|
|
concept uncvref_same_as = std::is_same_v<std::remove_cvref_t<Ref>, To>;
|
|
|
|
#endif
|
|
|
|
/**
|
|
* type_t
|
|
*
|
|
* A type alias for the first template type argument. `type_t` is useful for
|
|
* controlling class-template and function-template partial specialization.
|
|
*
|
|
* Example:
|
|
*
|
|
* template <typename Value>
|
|
* class Container {
|
|
* public:
|
|
* template <typename... Args>
|
|
* Container(
|
|
* type_t<in_place_t, decltype(Value(std::declval<Args>()...))>,
|
|
* Args&&...);
|
|
* };
|
|
*
|
|
* void_t
|
|
*
|
|
* A type alias for `void`. `void_t` is useful for controlling class-template
|
|
* and function-template partial specialization.
|
|
*
|
|
* Example:
|
|
*
|
|
* // has_value_type<T>::value is true if T has a nested type `value_type`
|
|
* template <class T, class = void>
|
|
* struct has_value_type
|
|
* : std::false_type {};
|
|
*
|
|
* template <class T>
|
|
* struct has_value_type<T, folly::void_t<typename T::value_type>>
|
|
* : std::true_type {};
|
|
*/
|
|
|
|
/**
|
|
* There is a bug in libstdc++, libc++, and MSVC's STL that causes it to
|
|
* ignore unused template parameter arguments in template aliases and does not
|
|
* cause substitution failures. This defect has been recorded here:
|
|
* http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558.
|
|
*
|
|
* This causes the implementation of std::void_t to be buggy, as it is likely
|
|
* defined as something like the following:
|
|
*
|
|
* template <typename...>
|
|
* using void_t = void;
|
|
*
|
|
* This causes the compiler to ignore all the template arguments and does not
|
|
* help when one wants to cause substitution failures. Rather declarations
|
|
* which have void_t in orthogonal specializations are treated as the same.
|
|
* For example, assuming the possible `T` types are only allowed to have
|
|
* either the alias `one` or `two` and never both or none:
|
|
*
|
|
* template <typename T,
|
|
* typename std::void_t<std::decay_t<T>::one>* = nullptr>
|
|
* void foo(T&&) {}
|
|
* template <typename T,
|
|
* typename std::void_t<std::decay_t<T>::two>* = nullptr>
|
|
* void foo(T&&) {}
|
|
*
|
|
* The second foo() will be a redefinition because it conflicts with the first
|
|
* one; void_t does not cause substitution failures - the template types are
|
|
* just ignored.
|
|
*/
|
|
|
|
namespace traits_detail {
|
|
template <class T, class...>
|
|
struct type_t_ {
|
|
using type = T;
|
|
};
|
|
} // namespace traits_detail
|
|
|
|
template <class T, class... Ts>
|
|
using type_t = typename traits_detail::type_t_<T, Ts...>::type;
|
|
template <class... Ts>
|
|
using void_t = type_t<void, Ts...>;
|
|
|
|
/// nonesuch
|
|
///
|
|
/// A tag type which traits may use to indicate lack of a result type.
|
|
///
|
|
/// Similar to void in that no values of this type may be constructed. Different
|
|
/// from void in that no functions may be defined with this return type and no
|
|
/// complete expressions may evaluate with this expression type.
|
|
///
|
|
/// mimic: std::experimental::nonesuch, Library Fundamentals TS v2
|
|
struct nonesuch {
|
|
~nonesuch() = delete;
|
|
nonesuch(nonesuch const&) = delete;
|
|
void operator=(nonesuch const&) = delete;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
template <typename Void, typename D, template <typename...> class, typename...>
|
|
struct detected_ {
|
|
using value_t = std::false_type;
|
|
using type = D;
|
|
};
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
struct detected_<void_t<T<A...>>, D, T, A...> {
|
|
using value_t = std::true_type;
|
|
using type = T<A...>;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// detected_or
|
|
///
|
|
/// If T<A...> substitutes, has member type alias value_t as std::true_type
|
|
/// and has member type alias type as T<A...>. Otherwise, has member type
|
|
/// alias value_t as std::false_type and has member type alias type as D.
|
|
///
|
|
/// mimic: std::experimental::detected_or, Library Fundamentals TS v2
|
|
///
|
|
/// Note: not resilient against incomplete types; may violate ODR.
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
using detected_or = detail::detected_<void, D, T, A...>;
|
|
|
|
/// detected_or_t
|
|
///
|
|
/// A trait type alias which results in T<A...> if substitution would succeed
|
|
/// and in D otherwise.
|
|
///
|
|
/// Equivalent to detected_or<D, T, A...>::type.
|
|
///
|
|
/// mimic: std::experimental::detected_or_t, Library Fundamentals TS v2
|
|
///
|
|
/// Note: not resilient against incomplete types; may violate ODR.
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
using detected_or_t = typename detected_or<D, T, A...>::type;
|
|
|
|
/// detected_t
|
|
///
|
|
/// A trait type alias which results in T<A...> if substitution would succeed
|
|
/// and in nonesuch otherwise.
|
|
///
|
|
/// Equivalent to detected_or_t<nonesuch, T, A...>.
|
|
///
|
|
/// mimic: std::experimental::detected_t, Library Fundamentals TS v2
|
|
///
|
|
/// Note: not resilient against incomplete types; may violate ODR.
|
|
template <template <typename...> class T, typename... A>
|
|
using detected_t = detected_or_t<nonesuch, T, A...>;
|
|
|
|
// is_detected_v
|
|
// is_detected
|
|
//
|
|
// A trait variable and type to test whether some metafunction from types to
|
|
// types would succeed or fail in substitution over a given set of arguments.
|
|
//
|
|
// The trait variable is_detected_v<T, A...> is equivalent to
|
|
// detected_or<nonesuch, T, A...>::value_t::value.
|
|
// The trait type is_detected<T, A...> unambiguously inherits
|
|
// std::bool_constant<V> where V is is_detected_v<T, A...>.
|
|
//
|
|
// mimic: std::experimental::is_detected, std::experimental::is_detected_v,
|
|
// Library Fundamentals TS v2
|
|
//
|
|
// Note: not resilient against incomplete types; may violate ODR.
|
|
//
|
|
// Note: the trait type is_detected differs here by being deferred.
|
|
template <template <typename...> class T, typename... A>
|
|
inline constexpr bool is_detected_v =
|
|
detected_or<nonesuch, T, A...>::value_t::value;
|
|
template <template <typename...> class T, typename... A>
|
|
struct is_detected : detected_or<nonesuch, T, A...>::value_t {};
|
|
|
|
template <typename T>
|
|
using aligned_storage_for_t =
|
|
typename std::aligned_storage<sizeof(T), alignof(T)>::type;
|
|
|
|
// ----
|
|
|
|
namespace fallback {
|
|
template <typename From, typename To>
|
|
inline constexpr bool is_nothrow_convertible_v =
|
|
(std::is_void<From>::value && std::is_void<To>::value) ||
|
|
( //
|
|
std::is_convertible<From, To>::value &&
|
|
std::is_nothrow_constructible<To, From>::value);
|
|
template <typename From, typename To>
|
|
struct is_nothrow_convertible
|
|
: std::bool_constant<is_nothrow_convertible_v<From, To>> {};
|
|
} // namespace fallback
|
|
|
|
// is_nothrow_convertible
|
|
// is_nothrow_convertible_v
|
|
//
|
|
// Import or backport:
|
|
// * std::is_nothrow_convertible
|
|
// * std::is_nothrow_convertible_v
|
|
//
|
|
// mimic: is_nothrow_convertible, C++20
|
|
#if defined(__cpp_lib_is_nothrow_convertible) && \
|
|
__cpp_lib_is_nothrow_convertible >= 201806L
|
|
using std::is_nothrow_convertible;
|
|
using std::is_nothrow_convertible_v;
|
|
#else
|
|
using fallback::is_nothrow_convertible;
|
|
using fallback::is_nothrow_convertible_v;
|
|
#endif
|
|
|
|
/**
|
|
* IsRelocatable<T>::value describes the ability of moving around
|
|
* memory a value of type T by using memcpy (as opposed to the
|
|
* conservative approach of calling the copy constructor and then
|
|
* destroying the old temporary. Essentially for a relocatable type,
|
|
* the following two sequences of code should be semantically
|
|
* equivalent:
|
|
*
|
|
* void move1(T * from, T * to) {
|
|
* new(to) T(from);
|
|
* (*from).~T();
|
|
* }
|
|
*
|
|
* void move2(T * from, T * to) {
|
|
* memcpy(to, from, sizeof(T));
|
|
* }
|
|
*
|
|
* Most C++ types are relocatable; the ones that aren't would include
|
|
* internal pointers or (very rarely) would need to update remote
|
|
* pointers to pointers tracking them. All C++ primitive types and
|
|
* type constructors are relocatable.
|
|
*
|
|
* This property can be used in a variety of optimizations. Currently
|
|
* fbvector uses this property intensively.
|
|
*
|
|
* The default conservatively assumes the type is not
|
|
* relocatable. Several specializations are defined for known
|
|
* types. You may want to add your own specializations. Do so in
|
|
* namespace folly and make sure you keep the specialization of
|
|
* IsRelocatable<SomeStruct> in the same header as SomeStruct.
|
|
*
|
|
* You may also declare a type to be relocatable by including
|
|
* `typedef std::true_type IsRelocatable;`
|
|
* in the class header.
|
|
*
|
|
* It may be unset in a base class by overriding the typedef to false_type.
|
|
*/
|
|
/*
|
|
* IsZeroInitializable describes the property that value-initialization
|
|
* is the same as memset(dst, 0, sizeof(T)).
|
|
*/
|
|
|
|
namespace traits_detail {
|
|
|
|
#define FOLLY_HAS_TRUE_XXX(name) \
|
|
template <typename T> \
|
|
using detect_##name = typename T::name; \
|
|
template <class T> \
|
|
struct name##_is_true : std::is_same<typename T::name, std::true_type> {}; \
|
|
template <class T> \
|
|
struct has_true_##name : std::conditional< \
|
|
is_detected_v<detect_##name, T>, \
|
|
name##_is_true<T>, \
|
|
std::false_type>::type {}
|
|
|
|
FOLLY_HAS_TRUE_XXX(IsRelocatable);
|
|
FOLLY_HAS_TRUE_XXX(IsZeroInitializable);
|
|
|
|
#undef FOLLY_HAS_TRUE_XXX
|
|
|
|
} // namespace traits_detail
|
|
|
|
struct Ignore {
|
|
Ignore() = default;
|
|
template <class T>
|
|
constexpr /* implicit */ Ignore(const T&) {}
|
|
template <class T>
|
|
const Ignore& operator=(T const&) const {
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <class...>
|
|
using Ignored = Ignore;
|
|
|
|
namespace traits_detail_IsEqualityComparable {
|
|
Ignore operator==(Ignore, Ignore);
|
|
|
|
template <class T, class U = T>
|
|
struct IsEqualityComparable
|
|
: std::is_convertible<
|
|
decltype(std::declval<T>() == std::declval<U>()),
|
|
bool> {};
|
|
} // namespace traits_detail_IsEqualityComparable
|
|
|
|
/* using override */ using traits_detail_IsEqualityComparable::
|
|
IsEqualityComparable;
|
|
|
|
namespace traits_detail_IsLessThanComparable {
|
|
Ignore operator<(Ignore, Ignore);
|
|
|
|
template <class T, class U = T>
|
|
struct IsLessThanComparable
|
|
: std::is_convertible<
|
|
decltype(std::declval<T>() < std::declval<U>()),
|
|
bool> {};
|
|
} // namespace traits_detail_IsLessThanComparable
|
|
|
|
/* using override */ using traits_detail_IsLessThanComparable::
|
|
IsLessThanComparable;
|
|
|
|
template <class T>
|
|
struct IsRelocatable
|
|
: std::conditional<
|
|
!require_sizeof<T> ||
|
|
is_detected_v<traits_detail::detect_IsRelocatable, T>,
|
|
traits_detail::has_true_IsRelocatable<T>,
|
|
#if defined(__cpp_lib_is_trivially_relocatable) // P1144
|
|
std::is_trivially_relocatable<T>
|
|
#else
|
|
std::is_trivially_copyable<T>
|
|
#endif
|
|
>::type {
|
|
};
|
|
|
|
template <class T>
|
|
struct IsZeroInitializable
|
|
: std::conditional<
|
|
!require_sizeof<T> ||
|
|
is_detected_v<traits_detail::detect_IsZeroInitializable, T>,
|
|
traits_detail::has_true_IsZeroInitializable<T>,
|
|
std::bool_constant< //
|
|
!std::is_class<T>::value && //
|
|
!std::is_union<T>::value && //
|
|
!std::is_member_object_pointer<T>::value && // itanium
|
|
true>>::type {};
|
|
|
|
namespace detail {
|
|
template <bool>
|
|
struct conditional_;
|
|
template <>
|
|
struct conditional_<false> {
|
|
template <typename, typename T>
|
|
using apply = T;
|
|
};
|
|
template <>
|
|
struct conditional_<true> {
|
|
template <typename T, typename>
|
|
using apply = T;
|
|
};
|
|
} // namespace detail
|
|
|
|
/// conditional_t
|
|
///
|
|
/// Like std::conditional_t but with only two total class template instances,
|
|
/// rather than as many class template instances as there are uses.
|
|
///
|
|
/// As one effect, the result can be used in deducible contexts, allowing
|
|
/// deduction of conditional_t<V, T, F> to work when T or F is a template param.
|
|
template <bool V, typename T, typename F>
|
|
using conditional_t = typename detail::conditional_<V>::template apply<T, F>;
|
|
|
|
template <typename...>
|
|
struct Conjunction : std::true_type {};
|
|
template <typename T>
|
|
struct Conjunction<T> : T {};
|
|
template <typename T, typename... TList>
|
|
struct Conjunction<T, TList...>
|
|
: std::conditional<T::value, Conjunction<TList...>, T>::type {};
|
|
|
|
template <typename...>
|
|
struct Disjunction : std::false_type {};
|
|
template <typename T>
|
|
struct Disjunction<T> : T {};
|
|
template <typename T, typename... TList>
|
|
struct Disjunction<T, TList...>
|
|
: std::conditional<T::value, T, Disjunction<TList...>>::type {};
|
|
|
|
template <typename T>
|
|
struct Negation : std::bool_constant<!T::value> {};
|
|
|
|
template <bool... Bs>
|
|
struct Bools {
|
|
using valid_type = bool;
|
|
static constexpr std::size_t size() { return sizeof...(Bs); }
|
|
};
|
|
|
|
// Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly.
|
|
template <class... Ts>
|
|
struct StrictConjunction
|
|
: std::is_same<Bools<Ts::value...>, Bools<(Ts::value || true)...>> {};
|
|
|
|
template <class... Ts>
|
|
struct StrictDisjunction
|
|
: Negation<
|
|
std::is_same<Bools<Ts::value...>, Bools<(Ts::value && false)...>>> {};
|
|
|
|
namespace detail {
|
|
template <typename T>
|
|
using is_transparent_ = typename T::is_transparent;
|
|
} // namespace detail
|
|
|
|
/// is_transparent_v
|
|
/// is_transparent
|
|
///
|
|
/// A trait variable and type to test whether a less, equal-to, or hash type
|
|
/// follows the is-transparent protocol used by containers with optional
|
|
/// heterogeneous access.
|
|
template <typename T>
|
|
inline constexpr bool is_transparent_v =
|
|
is_detected_v<detail::is_transparent_, T>;
|
|
template <typename T>
|
|
struct is_transparent : std::bool_constant<is_transparent_v<T>> {};
|
|
|
|
namespace detail {
|
|
|
|
template <typename T, typename = void>
|
|
inline constexpr bool is_allocator_ = !require_sizeof<T>;
|
|
template <typename T>
|
|
inline constexpr bool is_allocator_<
|
|
T,
|
|
void_t<
|
|
typename T::value_type,
|
|
decltype(std::declval<T&>().allocate(std::size_t{})),
|
|
decltype(std::declval<T&>().deallocate(
|
|
static_cast<typename T::value_type*>(nullptr), std::size_t{}))>> =
|
|
true;
|
|
|
|
} // namespace detail
|
|
|
|
/// is_allocator_v
|
|
/// is_allocator
|
|
///
|
|
/// A trait variable and type to test whether a type is an allocator according
|
|
/// to the minimum protocol required by std::allocator_traits.
|
|
template <typename T>
|
|
inline constexpr bool is_allocator_v = detail::is_allocator_<T>;
|
|
template <typename T>
|
|
struct is_allocator : std::bool_constant<is_allocator_v<T>> {};
|
|
|
|
} // namespace folly
|
|
|
|
/**
|
|
* Use this macro ONLY inside namespace folly. When using it with a
|
|
* regular type, use it like this:
|
|
*
|
|
* // Make sure you're at namespace ::folly scope
|
|
* template <> FOLLY_ASSUME_RELOCATABLE(MyType)
|
|
*
|
|
* When using it with a template type, use it like this:
|
|
*
|
|
* // Make sure you're at namespace ::folly scope
|
|
* template <class T1, class T2>
|
|
* FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>)
|
|
*/
|
|
#define FOLLY_ASSUME_RELOCATABLE(...) \
|
|
struct IsRelocatable<__VA_ARGS__> : std::true_type {}
|
|
|
|
/**
|
|
* The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode the
|
|
* assumption that the type is relocatable per IsRelocatable
|
|
* above. Many types can be assumed to satisfy this condition, but
|
|
* it is the responsibility of the user to state that assumption.
|
|
* User-defined classes will not be optimized for use with
|
|
* fbvector (see FBVector.h) unless they state that assumption.
|
|
*
|
|
* Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this:
|
|
*
|
|
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType)
|
|
*
|
|
* The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4
|
|
* allow using the macro for describing templatized classes with 1, 2,
|
|
* 3, and 4 template parameters respectively. For template classes
|
|
* just use the macro with the appropriate number and pass the name of
|
|
* the template to it. Example:
|
|
*
|
|
* template <class T1, class T2> class MyType { ... };
|
|
* ...
|
|
* // Make sure you're at global scope
|
|
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType)
|
|
*/
|
|
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \
|
|
namespace folly { \
|
|
template <> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \
|
|
namespace folly { \
|
|
template <class T1> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2, class T3> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2, class T3, class T4> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3, T4>); \
|
|
}
|
|
|
|
namespace folly {
|
|
|
|
// STL commonly-used types
|
|
template <class T, class U>
|
|
struct IsRelocatable<std::pair<T, U>>
|
|
: std::bool_constant<IsRelocatable<T>::value && IsRelocatable<U>::value> {};
|
|
|
|
// Is T one of T1, T2, ..., Tn?
|
|
template <typename T, typename... Ts>
|
|
using IsOneOf = StrictDisjunction<std::is_same<T, Ts>...>;
|
|
|
|
/*
|
|
* Complementary type traits for integral comparisons.
|
|
*
|
|
* For instance, `if(x < 0)` yields an error in clang for unsigned types
|
|
* when -Werror is used due to -Wtautological-compare
|
|
*/
|
|
|
|
// same as `x < 0`
|
|
template <typename T>
|
|
constexpr bool is_negative(T x) {
|
|
return std::is_signed<T>::value && x < T(0);
|
|
}
|
|
|
|
// same as `x <= 0`
|
|
template <typename T>
|
|
constexpr bool is_non_positive(T x) {
|
|
return !x || folly::is_negative(x);
|
|
}
|
|
|
|
// same as `x > 0`
|
|
template <typename T>
|
|
constexpr bool is_positive(T x) {
|
|
return !is_non_positive(x);
|
|
}
|
|
|
|
// same as `x >= 0`
|
|
template <typename T>
|
|
constexpr bool is_non_negative(T x) {
|
|
return !x || is_positive(x);
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
// folly::to integral specializations can end up generating code
|
|
// inside what are really static ifs (not executed because of the templated
|
|
// types) that violate -Wsign-compare and/or -Wbool-compare so suppress them
|
|
// in order to not prevent all calling code from using it.
|
|
FOLLY_PUSH_WARNING
|
|
FOLLY_GNU_DISABLE_WARNING("-Wsign-compare")
|
|
FOLLY_GCC_DISABLE_WARNING("-Wbool-compare")
|
|
FOLLY_MSVC_DISABLE_WARNING(4287) // unsigned/negative constant mismatch
|
|
FOLLY_MSVC_DISABLE_WARNING(4388) // sign-compare
|
|
FOLLY_MSVC_DISABLE_WARNING(4804) // bool-compare
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool less_than_impl(LHS const lhs) {
|
|
// clang-format off
|
|
return
|
|
// Ensure signed and unsigned values won't be compared directly.
|
|
(!std::is_signed<RHS>::value && is_negative(lhs)) ? true :
|
|
(!std::is_signed<LHS>::value && is_negative(rhs)) ? false :
|
|
rhs > std::numeric_limits<LHS>::max() ? true :
|
|
rhs <= std::numeric_limits<LHS>::lowest() ? false :
|
|
lhs < rhs;
|
|
// clang-format on
|
|
}
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool greater_than_impl(LHS const lhs) {
|
|
// clang-format off
|
|
return
|
|
// Ensure signed and unsigned values won't be compared directly.
|
|
(!std::is_signed<RHS>::value && is_negative(lhs)) ? false :
|
|
(!std::is_signed<LHS>::value && is_negative(rhs)) ? true :
|
|
rhs > std::numeric_limits<LHS>::max() ? false :
|
|
rhs < std::numeric_limits<LHS>::lowest() ? true :
|
|
lhs > rhs;
|
|
// clang-format on
|
|
}
|
|
|
|
FOLLY_POP_WARNING
|
|
|
|
} // namespace detail
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool less_than(LHS const lhs) {
|
|
return detail::
|
|
less_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(lhs);
|
|
}
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool greater_than(LHS const lhs) {
|
|
return detail::
|
|
greater_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(
|
|
lhs);
|
|
}
|
|
} // namespace folly
|
|
|
|
// Assume nothing when compiling with MSVC.
|
|
#ifndef _MSC_VER
|
|
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr)
|
|
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr)
|
|
#endif
|
|
|
|
namespace folly {
|
|
|
|
// Some compilers have signed __int128 and unsigned __int128 types, and some
|
|
// libraries with some compilers have traits for those types. It's a mess.
|
|
// Import things into folly and then fill in whatever is missing.
|
|
//
|
|
// The aliases:
|
|
// int128_t
|
|
// uint128_t
|
|
//
|
|
// The traits:
|
|
// is_arithmetic
|
|
// is_arithmetic_v
|
|
// is_integral
|
|
// is_integral_v
|
|
// is_signed
|
|
// is_signed_v
|
|
// is_unsigned
|
|
// is_unsigned_v
|
|
// make_signed
|
|
// make_signed_t
|
|
// make_unsigned
|
|
// make_unsigned_t
|
|
|
|
template <typename T>
|
|
struct is_arithmetic : std::is_arithmetic<T> {};
|
|
template <typename T>
|
|
inline constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_integral : std::is_integral<T> {};
|
|
template <typename T>
|
|
inline constexpr bool is_integral_v = is_integral<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_signed : std::is_signed<T> {};
|
|
template <typename T>
|
|
inline constexpr bool is_signed_v = is_signed<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_unsigned : std::is_unsigned<T> {};
|
|
template <typename T>
|
|
inline constexpr bool is_unsigned_v = is_unsigned<T>::value;
|
|
|
|
template <typename T>
|
|
struct make_signed : std::make_signed<T> {};
|
|
template <typename T>
|
|
using make_signed_t = typename make_signed<T>::type;
|
|
|
|
template <typename T>
|
|
struct make_unsigned : std::make_unsigned<T> {};
|
|
template <typename T>
|
|
using make_unsigned_t = typename make_unsigned<T>::type;
|
|
|
|
#if FOLLY_HAVE_INT128_T
|
|
|
|
using int128_t = signed __int128;
|
|
using uint128_t = unsigned __int128;
|
|
|
|
template <>
|
|
struct is_arithmetic<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_arithmetic<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct is_integral<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_integral<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct is_signed<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_signed<uint128_t> : std::false_type {};
|
|
template <>
|
|
struct is_unsigned<int128_t> : std::false_type {};
|
|
template <>
|
|
struct is_unsigned<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct make_signed<int128_t> {
|
|
using type = int128_t;
|
|
};
|
|
template <>
|
|
struct make_signed<uint128_t> {
|
|
using type = int128_t;
|
|
};
|
|
|
|
template <>
|
|
struct make_unsigned<int128_t> {
|
|
using type = uint128_t;
|
|
};
|
|
template <>
|
|
struct make_unsigned<uint128_t> {
|
|
using type = uint128_t;
|
|
};
|
|
#endif // FOLLY_HAVE_INT128_T
|
|
|
|
namespace traits_detail {
|
|
template <std::size_t>
|
|
struct uint_bits_t_ {};
|
|
template <>
|
|
struct uint_bits_t_<8> : type_t_<std::uint8_t> {};
|
|
template <>
|
|
struct uint_bits_t_<16> : type_t_<std::uint16_t> {};
|
|
template <>
|
|
struct uint_bits_t_<32> : type_t_<std::uint32_t> {};
|
|
template <>
|
|
struct uint_bits_t_<64> : type_t_<std::uint64_t> {};
|
|
#if FOLLY_HAVE_INT128_T
|
|
template <>
|
|
struct uint_bits_t_<128> : type_t_<uint128_t> {};
|
|
#endif // FOLLY_HAVE_INT128_T
|
|
} // namespace traits_detail
|
|
|
|
template <std::size_t bits>
|
|
using uint_bits_t = _t<traits_detail::uint_bits_t_<bits>>;
|
|
|
|
template <std::size_t lg_bits>
|
|
using uint_bits_lg_t = uint_bits_t<(1u << lg_bits)>;
|
|
|
|
template <std::size_t bits>
|
|
using int_bits_t = make_signed_t<uint_bits_t<bits>>;
|
|
|
|
template <std::size_t lg_bits>
|
|
using int_bits_lg_t = make_signed_t<uint_bits_lg_t<lg_bits>>;
|
|
|
|
namespace traits_detail {
|
|
|
|
template <std::size_t I, typename T>
|
|
struct type_pack_element_indexed_type {
|
|
using type = T;
|
|
};
|
|
|
|
template <typename, typename...>
|
|
struct type_pack_element_set;
|
|
template <std::size_t... I, typename... T>
|
|
struct type_pack_element_set<std::index_sequence<I...>, T...>
|
|
: type_pack_element_indexed_type<I, T>... {};
|
|
template <typename... T>
|
|
using type_pack_element_set_t =
|
|
type_pack_element_set<std::index_sequence_for<T...>, T...>;
|
|
|
|
template <std::size_t I>
|
|
struct type_pack_element_test {
|
|
template <typename T>
|
|
static type_pack_element_indexed_type<I, T> impl(
|
|
type_pack_element_indexed_type<I, T>*);
|
|
};
|
|
|
|
template <std::size_t I, typename... Ts>
|
|
using type_pack_element_fallback = _t<decltype(type_pack_element_test<I>::impl(
|
|
static_cast<type_pack_element_set_t<Ts...>*>(nullptr)))>;
|
|
|
|
} // namespace traits_detail
|
|
|
|
/// type_pack_element_t
|
|
///
|
|
/// In the type pack Ts..., the Ith element.
|
|
///
|
|
/// Wraps the builtin __type_pack_element where the builtin is available; where
|
|
/// not, implemented directly.
|
|
///
|
|
/// Under gcc, the builtin is available but does not mangle. Therefore, this
|
|
/// trait must not be used anywhere it might be subject to mangling, such as in
|
|
/// a return-type expression.
|
|
|
|
#if FOLLY_HAS_BUILTIN(__type_pack_element)
|
|
|
|
template <std::size_t I, typename... Ts>
|
|
using type_pack_element_t = __type_pack_element<I, Ts...>;
|
|
|
|
#else
|
|
|
|
template <std::size_t I, typename... Ts>
|
|
using type_pack_element_t = traits_detail::type_pack_element_fallback<I, Ts...>;
|
|
|
|
#endif
|
|
|
|
/// type_pack_size_v
|
|
///
|
|
/// The size of a type pack.
|
|
///
|
|
/// A metafunction around sizeof...(Ts).
|
|
template <typename... Ts>
|
|
inline constexpr std::size_t type_pack_size_v = sizeof...(Ts);
|
|
|
|
/// type_pack_size_t
|
|
///
|
|
/// The size of a type pack.
|
|
///
|
|
/// A metafunction around index_constant<sizeof...(Ts)>.
|
|
template <typename... Ts>
|
|
using type_pack_size_t = index_constant<sizeof...(Ts)>;
|
|
|
|
namespace traits_detail {
|
|
|
|
template <std::size_t I, template <typename...> class List, typename... T>
|
|
type_identity<type_pack_element_t<I, T...>> type_list_element_(
|
|
List<T...> const*);
|
|
|
|
template <template <typename...> class List, typename... T>
|
|
index_constant<sizeof...(T)> type_list_size_(List<T...> const*);
|
|
|
|
} // namespace traits_detail
|
|
|
|
/// type_list_element_t
|
|
///
|
|
/// In the type list List<T...>, where List has kind template <typename...> and
|
|
/// T... is a type-pack, equivalent to type_pack_element_t<I, T...>.
|
|
template <std::size_t I, typename List>
|
|
using type_list_element_t = _t<decltype(traits_detail::type_list_element_<I>(
|
|
static_cast<List const*>(nullptr)))>;
|
|
|
|
/// type_list_size_v
|
|
///
|
|
/// The size of a type list.
|
|
///
|
|
/// For List<T...>, equivalent to type_pack_size_v<T...>.
|
|
template <typename List>
|
|
inline constexpr std::size_t type_list_size_v =
|
|
decltype(traits_detail::type_list_size_(
|
|
static_cast<List const*>(nullptr)))::value;
|
|
|
|
/// type_list_size_t
|
|
///
|
|
/// The size of a type list.
|
|
///
|
|
/// For List<T...>, equivalent to type_pack_size_t<T...>.
|
|
template <typename List>
|
|
using type_list_size_t =
|
|
decltype(traits_detail::type_list_size_(static_cast<List const*>(nullptr)));
|
|
|
|
namespace detail {
|
|
|
|
// The arguments to this "error" type help the user debug bad invocations.
|
|
// It is purposely undefined to cause a compile error.
|
|
template <typename...>
|
|
struct error_list_concat_params_should_be_non_cvref;
|
|
|
|
// The primary template is only invoked for invalid parameters.
|
|
template <template <typename...> class Out, typename... T>
|
|
inline constexpr auto type_list_concat_ =
|
|
error_list_concat_params_should_be_non_cvref<T...>{};
|
|
|
|
template <template <typename...> class Out>
|
|
inline constexpr type_identity<Out<>> type_list_concat_<Out>;
|
|
|
|
template <
|
|
template <typename...>
|
|
class Out,
|
|
template <typename...>
|
|
class In,
|
|
typename... T>
|
|
inline constexpr auto type_list_concat_<Out, In<T...>> =
|
|
type_identity<Out<T...>>{};
|
|
|
|
template <
|
|
template <typename...>
|
|
class Out,
|
|
// Allow input lists to come from heterogeneous templates.
|
|
template <typename...>
|
|
class InA,
|
|
typename... A,
|
|
template <typename...>
|
|
class InB,
|
|
typename... B,
|
|
typename... Tail>
|
|
inline constexpr auto type_list_concat_<Out, InA<A...>, InB<B...>, Tail...> =
|
|
// Avoid instantiating the `In*` or `Out` types for the intermediate
|
|
// lists, since those types may be invalid, or expensive. Per my tests
|
|
// on clang using `tag_t` for the intermediate list is no more expensive
|
|
// than using a dedicated incomplete list type.
|
|
type_list_concat_<Out, tag_t<A..., B...>, Tail...>;
|
|
|
|
} // namespace detail
|
|
|
|
/// type_list_concat_t
|
|
///
|
|
/// Each `List` is a type list of the form `InK<TypeK...>`, where the
|
|
/// templates `InK` are potentially heterogeneous. Concatenates these
|
|
/// `List`s into a single type list `Out<Type1..., Type2..., ...>`.
|
|
template <template <typename...> class Out, typename... List>
|
|
using type_list_concat_t =
|
|
typename decltype(detail::type_list_concat_<Out, List...>)::type;
|
|
|
|
namespace traits_detail {
|
|
|
|
template <decltype(auto) V>
|
|
struct value_pack_constant {
|
|
inline static constexpr decltype(V) value = V;
|
|
};
|
|
|
|
} // namespace traits_detail
|
|
|
|
/// value_pack_size_v
|
|
///
|
|
/// The size of a value pack.
|
|
///
|
|
/// A metafunction around sizeof...(V).
|
|
template <auto... V>
|
|
inline constexpr std::size_t value_pack_size_v = sizeof...(V);
|
|
|
|
/// value_pack_size_t
|
|
///
|
|
/// The size of a value pack.
|
|
///
|
|
/// A metafunction around index_constant<sizeof...(V)>.
|
|
template <auto... V>
|
|
using value_pack_size_t = index_constant<sizeof...(V)>;
|
|
|
|
/// value_pack_element_type_t
|
|
///
|
|
/// In the value pack V..., the type of the Ith element.
|
|
template <std::size_t I, auto... V>
|
|
using value_pack_element_type_t = type_pack_element_t<I, decltype(V)...>;
|
|
|
|
/// value_pack_element_type_t
|
|
///
|
|
/// In the value pack V..., the Ith element.
|
|
template <std::size_t I, auto... V>
|
|
inline constexpr value_pack_element_type_t<I, V...> value_pack_element_v =
|
|
type_pack_element_t<I, traits_detail::value_pack_constant<V>...>::value;
|
|
|
|
namespace traits_detail {
|
|
|
|
template <typename List>
|
|
struct value_list_traits_;
|
|
template <template <auto...> class List, auto... V>
|
|
struct value_list_traits_<List<V...>> {
|
|
static constexpr std::size_t size = sizeof...(V);
|
|
template <std::size_t I>
|
|
using element_type = value_pack_element_type_t<I, V...>;
|
|
template <std::size_t I>
|
|
static constexpr value_pack_element_type_t<I, V...> element =
|
|
value_pack_element_v<I, V...>;
|
|
};
|
|
|
|
} // namespace traits_detail
|
|
|
|
/// value_list_size_v
|
|
///
|
|
/// The size of a value list.
|
|
///
|
|
/// For List<V...>, equivalent to value_pack_size_v<V...>.
|
|
template <typename List>
|
|
inline constexpr std::size_t value_list_size_v =
|
|
traits_detail::value_list_traits_<List>::size;
|
|
|
|
/// value_list_size_t
|
|
///
|
|
/// The size of a value list.
|
|
///
|
|
/// For List<V...>, equivalent to value_pack_size_t<V...>.
|
|
template <typename List>
|
|
using value_list_size_t = index_constant<value_list_size_v<List>>;
|
|
|
|
/// value_list_element_type_t
|
|
///
|
|
/// For List<V...>, the type of the Ith element.
|
|
template <std::size_t I, typename List>
|
|
using value_list_element_type_t =
|
|
typename traits_detail::value_list_traits_<List>::template element_type<I>;
|
|
|
|
/// value_list_element_v
|
|
///
|
|
/// For List<V...>, the Ith element.
|
|
template <std::size_t I, typename List>
|
|
inline constexpr value_list_element_type_t<I, List> value_list_element_v =
|
|
traits_detail::value_list_traits_<List>::template element<I>;
|
|
|
|
namespace detail {
|
|
|
|
// The primary template is only invoked for invalid parameters.
|
|
template <template <auto...> class Out, typename... T>
|
|
inline constexpr auto value_list_concat_ =
|
|
error_list_concat_params_should_be_non_cvref<T...>{};
|
|
|
|
template <template <auto...> class Out>
|
|
inline constexpr type_identity<Out<>> value_list_concat_<Out>;
|
|
|
|
template <template <auto...> class Out, template <auto...> class In, auto... V>
|
|
inline constexpr auto value_list_concat_<Out, In<V...>> =
|
|
type_identity<Out<V...>>{};
|
|
|
|
template <
|
|
template <auto...>
|
|
class Out,
|
|
// Allow input lists to come from heterogeneous templates.
|
|
template <auto...>
|
|
class InA,
|
|
auto... A,
|
|
template <auto...>
|
|
class InB,
|
|
auto... B,
|
|
typename... Tail>
|
|
inline constexpr auto value_list_concat_<Out, InA<A...>, InB<B...>, Tail...> =
|
|
// The use of `vtag_t` is explained in the analogous `type_list_concat_.
|
|
value_list_concat_<Out, vtag_t<A..., B...>, Tail...>;
|
|
|
|
} // namespace detail
|
|
|
|
/// value_list_concat_t
|
|
///
|
|
/// Each `List` is a value list of the form `InK<ValK...>`, where the
|
|
/// templates `InK` are potentially heterogeneous. Concatenates these
|
|
/// `List`s into a single value list `Out<Val1..., Val2..., ...>`.
|
|
template <template <auto...> class Out, typename... List>
|
|
using value_list_concat_t =
|
|
typename decltype(detail::value_list_concat_<Out, List...>)::type;
|
|
|
|
namespace detail {
|
|
|
|
template <typename V, typename... T>
|
|
constexpr std::size_t type_pack_find_() {
|
|
bool eq[] = {std::is_same_v<V, T>..., true};
|
|
for (size_t i = 0; i < sizeof...(T); ++i) {
|
|
if (eq[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
return sizeof...(T);
|
|
}
|
|
|
|
template <typename>
|
|
struct type_list_find_;
|
|
template <template <typename...> class List, typename... T>
|
|
struct type_list_find_<List<T...>> {
|
|
template <typename V>
|
|
static inline constexpr std::size_t apply = type_pack_find_<V, T...>();
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// type_pack_find_v
|
|
///
|
|
/// The index of the element of the type pack which is identical to the given
|
|
/// type, or the size of the pack if there is no such element.
|
|
template <typename V, typename... T>
|
|
inline constexpr std::size_t type_pack_find_v =
|
|
detail::type_pack_find_<V, T...>();
|
|
|
|
/// type_pack_find_t
|
|
///
|
|
/// The index of the element of the type pack which is identical to the given
|
|
/// type, or the size of the pack if there is no such element.
|
|
template <typename V, typename... T>
|
|
using type_pack_find_t = index_constant<type_pack_find_v<V, T...>>;
|
|
|
|
/// type_list_find_v
|
|
///
|
|
/// The index of the element of the type list which is identical to the given
|
|
/// type, or the size of the list if there is no such element.
|
|
template <typename V, typename List>
|
|
inline constexpr std::size_t type_list_find_v =
|
|
detail::type_list_find_<List>::template apply<V>;
|
|
|
|
/// type_list_find_t
|
|
///
|
|
/// The index of the element of the type list which is identical to the given
|
|
/// type, or the size of the list if there is no such element.
|
|
template <typename V, typename List>
|
|
using type_list_find_t = index_constant<type_list_find_v<V, List>>;
|
|
|
|
} // namespace folly
|